Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 83(5): 1575-9, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21238754

ABSTRACT

A quantitative analytical imaging approach for determining the nickel content of metallic meteorites is proposed. The approach uses a digital image of a series of standard solutions of the nickel-dimethylglyoxime coloured chelate and a meteorite sample solution subjected to the same treatment as the nickel standards for quantitation. The image is processed with suitable software to assign a colour-dependent numerical value (analytical signal) to each standard. Such a value is directly proportional to the analyte concentration, which facilitates construction of a calibration graph where the value for the unknown sample can be interpolated to calculate the nickel content of the meteorite. The results thus obtained were validated by comparison with the official, ISO-endorsed spectrophotometric method for nickel. The proposed method is fairly simple and inexpensive; in fact, it uses a commercially available digital camera as measuring instrument and the images it provides are processed with highly user-friendly public domain software (specifically, ImageJ, developed by the National Institutes of Health and freely available for download on the Internet). In a scenario dominated by increasingly sophisticated and expensive equipment, the proposed method provides a cost-effective alternative based on simple, robust hardware that is affordable and can be readily accessed worldwide. This can be especially advantageous for countries were available resources for analytical equipment investments are scant. The proposed method is essentially an adaptation of classical chemical analysis to current, straightforward, robust, cost-effective instrumentation.


Subject(s)
Iron/chemistry , Meteoroids , Colorimetry/economics , Spectrophotometry/economics
SELECTION OF CITATIONS
SEARCH DETAIL