Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters










Publication year range
1.
J Plant Physiol ; 297: 154259, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38705079

ABSTRACT

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.

2.
Plant Sci ; 342: 112028, 2024 May.
Article in English | MEDLINE | ID: mdl-38360401

ABSTRACT

Iron (Fe) and phosphate (Pi) are two essential nutrients that are poorly available in the soil and should be supplemented either as fertilizers or organic amendments to sustain crop production. Currently, determining how rhizosphere bacteria contribute to plant mineral nutrient acquisition is an area of growing interest regarding its potential application in agriculture. The aim of this study was to investigate the influence of root colonization by Pseudomonas putida for Arabidopsis growth through Fe and Pi nutritional signaling. We found that root colonization by the bacterium inhibits primary root elongation and promotes the formation of lateral roots. These effects could be related to higher expression of two Pi starvation-induced genes and AtPT1, the major Pi transporter in root tips. In addition, P. putida influenced the accumulation of Fe in the root and the expression of different elements of the Fe uptake pathway. The loss of function of the protein ligase BRUTUS (BTS), and the bHLH transcription factors POPEYE (PYE) and IAA-LEUCINE RESISTANT3 (ILR3) compromised the root branching stimulation triggered by bacterial inoculation while the leaf chlorosis in the fit1 and irt1-1 mutant plants grown under standard conditions could be bypassed by P. putida inoculation. The WT and both mutant lines showed similar Fe accumulation in roots. P. putida repressed the expression of the IRON-REGULATED TRANSPORTER 1 (IRT1) gene suggesting that the bacterium promotes an alternative Fe uptake mechanism. These results open the door for the use of P. putida to enhance nutrient uptake and optimize fertilizer usage by plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Pseudomonas putida , Arabidopsis/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Phosphates/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
3.
Plant Cell Environ ; 47(5): 1513-1525, 2024 May.
Article in English | MEDLINE | ID: mdl-38251425

ABSTRACT

The DNA damage response avoids mutations into dividing cells. Here, we analysed the role of photoreceptors on the restriction of root growth imposed by genotoxic agents and its relationship with cell viability and performance of meristems. Comparison of root growth of Arabidopsis WT, phyA-211, phyB-9, and phyA-211phyB-9 double mutants unveiled a critical role for phytochrome A (PhyA) in protecting roots from genotoxic stress, regeneration and cell replenishment in the meristematic zone. PhyA was located on primary root tips, where it influences genes related to the repair of DNA, including ERF115 and RAD51. Interestingly, phyA-211 mutants treated with zeocin failed to induce the expression of the repressor of cell cycle MYB3R3, which correlated with expression of the mitotic cyclin CycB1, suggesting that PhyA is required for safeguarding the DNA integrity during cell division. Moreover, the growth of the primary roots of PhyA downstream component HY5 and root growth analyses in darkness suggest that cell viability and DNA damage responses within root meristems may act independently from light and photomorphogenesis. These data support novel roles for PhyA as a key player for stem cell niche maintenance and DNA damage responses, which are critical for proper root growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Death , DNA/metabolism , DNA Repair/genetics , Light , Meristem/genetics , Meristem/metabolism , Mutation , Phytochrome/metabolism , Phytochrome A/genetics , Phytochrome A/metabolism , Phytochrome B/metabolism
4.
Microbiol Res ; 281: 127594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38211416

ABSTRACT

Soil alkalinity is a critical environmental factor for plant growth and distribution in ecosystems. An alkaline condition (pH > 7) is imposed by the rising concentration of hydroxides and cations, and prevails in semiarid and arid environments, which represent more than 25% of the total arable land of the world. Despite the great pressure exerted by alkalinity for root viability and plant survival, scarce information is available to understand how root microbes contribute to alkaline pH adaptation. Here, we assessed the effects of alkalinity on shoot and root biomass production, chlorophyll content, root growth and branching, lateral root primordia formation, and the expression of CYCB1, TOR kinase, and auxin and cytokinin-inducible trangenes in shoots and roots of Arabidopsis seedlings grown in Petri plates with agar-nutrient medium at pH values of 7.0, 7.5, 8.0, 8.5, and 9.0. The results showed an inverse correlation between the rise of pH and most growth, hormonal and genetic traits analyzed. Noteworthy, root inoculation with Achromobacter sp. 5B1, a beneficial rhizospheric bacterium, with plant growth promoting and salt tolerance features, increased biomass production, restored root growth and branching and enhanced auxin responses in WT seedlings and auxin-related mutants aux1-7 and eir1, indicating that stress adaptation operates independently of canonical auxin transporter proteins. Sequencing of the Achromobacter sp. 5B1 genome unveiled 5244 protein-coding genes, including genes possibly involved in auxin biosynthesis, quorum-sensing regulation and stress adaptation, which may account for its plant growth promotion attributes. These data highlight the critical role of rhizobacteria to increase plant resilience under high soil pH conditions potentially through genes for adaptation to an extreme environment and bacteria-plant communication.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Seedlings , Arabidopsis Proteins/genetics , Ecosystem , Plant Roots , Indoleacetic Acids/metabolism , Soil , Gene Expression Regulation, Plant
5.
Planta ; 258(4): 80, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715847

ABSTRACT

MAIN CONCLUSION: In P. aeruginosa, mutation of the gene encoding N-acyl-L-homoserine lactone synthase LasI drives defense and plant growth promotion, and this latter trait requires adequate nitrate nutrition. Cross-kingdom communication with bacteria is crucial for plant growth and productivity. Here, we show a strong induction of genes for nitrate uptake and assimilation in Arabidopsis seedlings co-cultivated with P. aeruginosa WT (PAO1) or ΔlasI mutants defective on the synthesis of the quorum-sensing signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone. Along with differential induction of defense-related genes, the change from plant growth repression to growth promotion upon bacterial QS disruption, correlated with upregulation of the dual-affinity nitrate transceptor CHL1/AtNRT1/NPF6.3 and the nitrate reductases NIA1 and NIA2. CHL1-GUS was induced in Arabidopsis primary root tips after transfer onto P. aeruginosa ΔlasI streaks at low and high N availability, whereas this bacterium required high concentrations of nitrogen to potentiate root and shoot biomass production and to improve root branching. Arabidopsis chl1-5 and chl1-12 mutants and double mutants in NIA1 and NIA2 nitrate reductases showed compromised growth under low nitrogen availability and failed to mount an effective growth promotion and root branching response even at high NH4NO3. WT P. aeruginosa PAO1 and P. aeruginosa ΔlasI mutant promoted the accumulation of nitric oxide (NO) in roots of both the WT and nia1nia2 double mutants, whereas NO donors SNP or SNAP did not improve growth or root branching in nia1nia2 double mutants with or without bacterial cocultivation. Thus, inoculation of Arabidopsis roots with P. aeruginosa drives gene expression for improved nitrogen acquisition and this macronutrient is critical for the plant growth-promoting effects upon disruption of the LasI quorum-sensing system.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Nitrates , Pseudomonas aeruginosa/genetics , Arabidopsis/genetics , Lactones , Acyl-Butyrolactones , Nitrate Reductases , Nitric Oxide , Arabidopsis Proteins/genetics , Nitrate Reductase/genetics
6.
Environ Res ; 233: 116357, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37295582

ABSTRACT

Pesticide and fertilizer usage is at the center of agricultural production to meet the demands of an ever-increasing global population. However, rising levels of chemicals impose a serious threat to the health of humans, animals, plants, and even the entire biosphere because of their toxic effects. Biostimulants offer the opportunity to reduce the agricultural chemical footprint owing their multilevel, beneficial properties helping to make agriculture more sustainable and resilient. When applied to plants or to the soil an increased absorption and distribution of nutrients, tolerance to environmental stress, and improved quality of plant products explain the mechanisms by which these probiotics are useful. In recent years, the use of plant biostimulants has received widespread attention across the globe as an ecologically acceptable alternative to sustainable agricultural production. As a result, their worldwide market continues to grow, and further research will be conducted to broaden the range of the products now available. Through this review, we present a current understanding of biostimulants, their mode of action and their involvement in modulating abiotic stress responses, including omics research, which may provide a comprehensive assessment of the crop's response by correlating molecular changes to physiological pathways activated under stress conditions aggravated by climate change.


Subject(s)
Agriculture , Climate Change , Humans , Animals , Crops, Agricultural , Soil , Stress, Physiological
7.
Plants (Basel) ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37050166

ABSTRACT

N,N-dimethylhexadecylamine (DMHDA) is a bacterial volatile organic compound that affects plant growth and morphogenesis and is considered a cross-kingdom signal molecule. Its bioactivity involves crosstalk with the cytokinin and jasmonic acid (JA) pathways to control stem cell niches and induce iron deficiency adaptation and plant defense. In this study, through genetic analysis, we show that the DMHDA-JA-Ethylene (ET) relations determine the magnitude of the defensive response mounted during the infestation of Arabidopsis plants by the pathogenic fungus Botrytis cinerea. The Arabidopsis mutants defective in the JA receptor CORONATINE INSENSITIVE 1 (coi1-1) showed a more severe infestation when compared to wild-type plants (Col-0) that were partially restored by DMHDA supplements. Moreover, the oversensitivity manifested by ETHYLENE INSENSITIVE 2 (ein2) by B. cinerea infestation could not be reverted by the volatile, suggesting a role for this gene in DMHDA reinforcement of immunity. Growth of Col-0 plants was inhibited by DMHDA, but ein2 did not. Noteworthy, Arabidopsis seeds treated with DMHDA produced more vigorous plants throughout their life cycle. These data are supportive of a scenario where plant perception of a bacterial volatile influences the resistance to a fungal phytopathogen while modulating plant growth.

8.
Protoplasma ; 260(5): 1257-1269, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36877382

ABSTRACT

The modulation of plant growth and development through reactive oxygen species (ROS) is a hallmark during the interactions with microorganisms, but how fungi and their molecules influence endogenous ROS production in the root remains unknown. In this report, we correlated the biostimulant effect of Trichoderma atroviride with Arabidopsis root development via ROS signaling. T. atroviride enhanced ROS accumulation in primary root tips, lateral root primordia, and emerged lateral roots as revealed by total ROS imaging through the fluorescent probe H2DCF-DA and NBT detection. Acidification of the substrate and emission of the volatile organic compound 6-pentyl-2H-pyran-2-one appear to be major factors by which the fungus triggers ROS accumulation. Besides, the disruption of plant NADPH oxidases, also known as respiratory burst oxidase homologs (RBOHs) including ROBHA, RBOHD, but mainly RBOHE, impaired root and shoot fresh weight and the root branching enhanced by the fungus in vitro. RbohE mutant plants displayed poor lateral root proliferation and lower superoxide levels than wild-type seedlings in both primary and lateral roots, indicating a role for this enzyme for T. atroviride-induced root branching. These data shed light on the roles of ROS as messengers for plant growth and root architectural changes during the plant-Trichoderma interaction.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Trichoderma , Trichoderma/genetics , Reactive Oxygen Species/metabolism , Arabidopsis Proteins/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Plant Roots , Gene Expression Regulation, Plant
9.
Plant Signal Behav ; 18(1): 2191460, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36942634

ABSTRACT

Root hairs are epidermal cell extensions that increase the root surface for water and nutrient acquisition. Thus, both the initiation and elongation of root hairs are critical for soil exploration and plant adaptation to ever changing growth conditions. Here, we describe the critical roles of two subunits of the Mediator complex, MED12 and MED13, in root hair growth in response to sucrose and abscisic acid, which are tightly linked to abiotic stress resistance. When compared to the WT, med12 and med13 mutants showed increased sensitivity to sucrose and ABA treatments on root meristem and elongation zones that were accompanied with alterations in root hair length and morphology, leading to the isodiametric growth of these structures. The swollen root hair phenotype appeared to be specific, since med8 or med16 mutants did not develop rounded hairs when supplied with 4.8% sucrose. Under standard growth medium, MED12 and MED13 were mainly expressed in root vascular tissues and cotyledons, and their expression was repressed by sucrose or ABA. Interestingly, med12 and med13 mutants manifested exacerbated levels of nitric oxide under normal growth conditions, and upon sucrose supplementation in trichoblast cells, which coincided with root hair deformation. Our results indicate that MED12 and MED13 play non-redundant functions for maintenance of root hair integrity in response to sucrose and ABA and involve nitric oxide as a cellular messenger in Arabidopsis thaliana.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Nitric Oxide/metabolism , Plant Roots/metabolism , Sucrose/metabolism , Transcription Factors/metabolism
10.
Curr Microbiol ; 80(4): 117, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36853512

ABSTRACT

The genera Serratia and Enterobacter belong to the Enterobacteriaceae family and several members have been described as plant growth-promoting rhizobacteria (PGPR). However, how these bacteria influence growth and development is unclear. We performed in vitro interaction assays between either Serratia sp. H6 or Enterobacter sp. L7 with Arabidopsis thaliana seedlings to analyze their effects on plant growth. In experiments of co-cultivation distant from the root tip, Enterobacter sp. decreased root length, markedly increased lateral root number, and slightly increased plant biomass by 33%, 230%, and 69%, respectively, and relative to the control. The volatile organic compounds (VOCs) emitted from Serratia sp. H6 but not those from Enterobacter sp. L7 promoted Arabidopsis growth. A blend of volatile compounds from the two bacteria had effects on plant growth that were similar to those observed for volatile compounds from H6 only. At several densities, the direct contact of roots with Serratia sp. H6 had phytostimulant properties but Enterobacter sp. L7 had clear deleterious effects. Together, these results suggest that direct contact and VOCs of Serratia sp. H6 were the main mechanisms to promote plant growth of A. thaliana, while diffusible compounds of Enterobacter sp. L7 were predominant in their PGPR activity.


Subject(s)
Alphaproteobacteria , Arabidopsis , Volatile Organic Compounds , Serratia , Enterobacter , Enterobacteriaceae
11.
Curr Opin Plant Biol ; 73: 102336, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36716513

ABSTRACT

The rhizosphere is the soil-plant interface colonized by bacterial and fungal species that exert growth-promoting and adaptive benefits. The plant-bacteria relationships rely upon the perception of volatile organic compounds (VOCs), canonical phytohormones such as auxins and cytokinins, and the bacterial quorum sensing-related N-acyl-L-homoserine lactones and cyclodipeptides. On the other hand, plant-beneficial Trichoderma fungi emit highly active VOCs, including 6-pentyl-2H-pyran-2-one (6-PP), and ß-caryophyllene, which contribute to plant morphogenesis, but also into how these microbes spread over roots or live as endophytes. Here, we describe recent findings concerning how compounds from beneficial bacteria and fungi affect root architecture and advance into the signaling events that mediate microbial recognition.


Subject(s)
Rhizosphere , Volatile Organic Compounds , Plant Development , Plant Growth Regulators , Bacteria , Plants/microbiology , Fungi , Plant Roots , Soil Microbiology
12.
Microb Ecol ; 86(1): 431-445, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35867140

ABSTRACT

The interaction of plants with bacteria and the long-term success of their adaptation to challenging environments depend upon critical traits that include nutrient solubilization, remodeling of root architecture, and modulation of host hormonal status. To examine whether bacterial promotion of phosphate solubilization, root branching and the host auxin response may account for plant growth, we isolated and characterized ten bacterial strains based on their high capability to solubilize calcium phosphate. All strains could be grouped into six Pseudomonas species, namely P. brassicae, P. baetica, P. laurylsulfatiphila, P. chlororaphis, P. lurida, and P. extremorientalis via 16S rRNA molecular analyses. A Solibacillus isronensis strain was also identified, which remained neutral when interacting with Arabidopsis roots, and thus could be used as inoculation control. The interaction of Arabidopsis seedlings with bacterial streaks from pure cultures in vitro indicated that their phytostimulation properties largely differ, since P. brassicae and P. laurylsulfatiphila strongly increased shoot and root biomass, whereas the other species did not. Most bacterial isolates, except P. chlororaphis promoted lateral root formation, and P. lurida and P. chlororaphis strongly enhanced expression of the auxin-inducible gene construct DR5:GUS in roots, but the most bioactive probiotic bacterium P. brassicae could not enhance the auxin response. Inoculation with P. brassicae and P. lurida improved shoot and root growth in medium supplemented with calcium phosphate as the sole Pi source. Collectively, our data indicate the differential responses of Arabidopsis seedlings to inoculation with several Pseudomonas species and highlight the potential of P. brassicae to manage phosphate nutrition and plant growth in a more eco-friendly manner.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Pseudomonas/genetics , Seedlings , Phosphates/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Plant Roots/microbiology , Indoleacetic Acids/metabolism , Bacteria/genetics
13.
Environ Pollut ; 312: 120084, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36057328

ABSTRACT

Research over the last three decades showed that chromium, particularly the oxyanion chromate Cr(VI) behaves as a toxic environmental pollutant that strongly damages plants due to oxidative stress, disruption of nutrient uptake, photosynthesis and metabolism, and ultimately, represses growth and development. However, mild Cr(VI) concentrations promote growth, induce adventitious root formation, reinforce the root cap, and produce twin roots from single root meristems under conditions that compromise cell viability, indicating its important role as a driver for root organogenesis. In recent years, considerable advance has been made towards deciphering the molecular mechanisms for root sensing of chromate, including the identification of regulatory proteins such as SOLITARY ROOT and MEDIATOR 18 that orchestrate the multilevel dynamics of the oxyanion. Cr(VI) decreases the expression of several glutamate receptors, whereas amino acids such as glutamate, cysteine and proline confer protection to plants from hexavalent chromium stress. The crosstalk between plant hormones, including auxin, ethylene, and jasmonic acid enables tissues to balance growth and defense under Cr(VI)-induced oxidative damage, which may be useful to better adapt crops to biotic and abiotic challenges. The highly contrasting responses of plants manifested at the transcriptional and translational levels depend on the concentration of chromate in the media, and fit well with the concept of hormesis, an adaptive mechanism that primes plants for resistance to environmental challenges, toxins or pollutants. Here, we review the contrasting facets of Cr(VI) in plants including the cellular, hormonal and molecular aspects that mechanistically separate its toxic effects from biostimulant outputs.


Subject(s)
Chromates , Environmental Pollutants , Chromates/metabolism , Chromium/chemistry , Cysteine/metabolism , Cysteine/pharmacology , Environmental Pollutants/metabolism , Ethylenes/metabolism , Ethylenes/pharmacology , Glutamates/metabolism , Glutamates/pharmacology , Hormesis , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plants/metabolism , Proline/metabolism , Proline/pharmacology
14.
Plant Sci ; 323: 111396, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35878696

ABSTRACT

Serotonin (5-hydroxytryptamine) acts as a neurotransmitter in mammals and is widely distributed in the plant kingdom, where it influences root growth and defense. Mitogen-Activated Protein Kinases (MAPKs) and MAPK phosphatases (MKPs) play critical functions in decoding hormonal signalling, but their possible roles in mediating serotonin responses await investigation. In this report, we unveiled positive roles for the MITOGEN-ACTIVATED PROTEIN KINASE PHOSPHATASE1 (MKP1) in the inhibition of the primary root growth, cell division, meristem structure, and differentiation events in Arabidopsis seedlings. mkp1 mutants were less sensitive to jasmonic acid applications that halted primary root growth in wild-type (WT) plants, and consistently, the neurotransmitter activated the expression of the JASMONATE ZIM-domain (JAZ) proteins JAZ1 and JAZ10, two critical proteins orchestrating jasmonic acid signalling. This effect correlated with exacerbated production of endogenous reactive oxygen species (ROS) in the WT, a process constitutively manifested in mkp1 mutants. These data help to clarify the relationship between serotonin and growth/defense trade-offs, and reveal the importance of the MAPK pathway in root development through ROS production.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinases/metabolism , Oxylipins , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/pharmacology , Reactive Oxygen Species/metabolism , Serotonin/metabolism , Serotonin/pharmacology
15.
Arch Microbiol ; 204(7): 380, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35680712

ABSTRACT

Plant growth-promoting fungi are integral components of the root microbiome that help the host resist biotic and abiotic stress while improving nutrient acquisition. Trichoderma atroviride is a common inhabitant of the rhizosphere, which establishes a perdurable symbiosis with plants through the emission of volatiles, diffusible compounds, and robust colonization. Currently, little is known on how the environment influences the Trichoderma-plant interaction. In this report, we assessed plant growth and root architectural reconfiguration of Arabidopsis seedlings grown in physical contact with T. atroviride under contrasting nitrate and ammonium availability. The shoot and root biomass accumulation and lateral root formation triggered by the fungus required high nitrogen supplements and involved nitrate reduction via AtNIA1 and NIA2. Ammonium supplementation did not restore biomass production boosted by T. atroviride in nia1nia2 double mutant, but instead fungal inoculation increased nitric oxide accumulation in Arabidopsis primary root tips depending upon nitrate supplements. N deprived seedlings were largely resistant to the effects of nitric oxide donor SNP triggering lateral root formation. T. atroviride enhanced expression of CHL1:GUS in root tips, particularly under high N supplements and required an intact CHL1 nitrate transporter to promote lateral root formation in Arabidopsis seedlings. These data imply that the developmental programs strengthened by Trichoderma and the underlying growth promotion in plants are dependent upon adequate nitrate nutrition and may involve nitric oxide as a second messenger.


Subject(s)
Ammonium Compounds , Arabidopsis , Hypocreales , Probiotics , Trichoderma , Ammonium Compounds/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Hypocreales/metabolism , Nitrates/metabolism , Nitric Oxide/pharmacology , Nitrogen/metabolism , Plant Roots/microbiology , Seedlings , Trichoderma/genetics
16.
J Plant Physiol ; 275: 153738, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35690030

ABSTRACT

Plants being sessile organisms are exposed to various biotic and abiotic factors, thus causing stress. The Pseudomonas aeruginosa bacterium is an opportunistic pathogen for animals, insects, and plants. Direct exposure of Arabidopsis thaliana to the P. aeruginosa PAO1 strain induces plant death by producing a wide variety of virulence factors, which are regulated mainly by quorum sensing systems. Besides virulence factors, P. aeruginosa PAO1 also produces cyclodipeptides (CDPs), which possess auxin-like activity and promote plant growth through activation of the target of the rapamycin (AtTOR) pathway. On the other hand, plant defense mechanisms are regulated through the production of phytohormones, such as salicylic acid (SA) and jasmonic acid (JA), which are induced in response to pathogen-associated molecular patterns (PAMPs), activating defense genes associated with SA and JA such as PATHOGENESIS-RELATED-1 (PR-1) and LIPOXYGENASE2 (LOX2), respectively. PR proteins are suggested to play critical roles in coordinating the Systemic Acquired Resistance (SAR). In contrast, LOX proteins (LOX2, LOX3, and LOX4) have been associated with the production of JA by producing its precursors, oxylipins. The activation of defense mechanisms involves signaling cascades such as Mitogen-Activated Protein Kinases (MAPKs) or the TOR pathway as a switch for re-directing energy towards defense or growth. In this work, we challenged A. thaliana (wild type, mpk6 or mpk3 mutants, and overexpressing TOR) seedlings with P. aeruginosa PAO1 strains to identify the role of bacterial CDPs in the plant immune response. Results showed that the pre-exposure of these Arabidopsis seedlings to CDPs significantly reduced plant infection of the pathogenic P. aeruginosa PAO1 strains, indicating that plants that over-express AtTOR or lack MPK3/MPK6 protein-kinases are more susceptible to the pathogenic effects. In addition, CDPs induced the GUS activity only in the LOX2::GUS plants, indicative of JA-signaling activation. Our findings indicate that the CDPs are molecules that trigger SA-independent and JA-dependent defense responses in A. thaliana; hence, bacterial CDPs may be considered elicitors of the Arabidopsis immune response to pathogens.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclopentanes/metabolism , Immunity , Oxylipins/metabolism , Plant Development , Plant Diseases/microbiology , Pseudomonas aeruginosa , Salicylic Acid/metabolism , Virulence Factors/metabolism , Virulence Factors/pharmacology
17.
Protoplasma ; 259(5): 1175-1188, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34981212

ABSTRACT

The RNA polymerase II drives the biogenesis of coding and non-coding RNAs for gene expression. Here, we describe new roles for its second-largest subunit, NRPB2, on root organogenesis and regeneration. Down-regulation of NRPB2 activates a determinate developmental program, which correlated with a reduction in mitotic activity, cell elongation, and size of the root apical meristem. Noteworthy, nrpb2-3 mutants manifest cell death in pro-vascular cells within primary root tips of plants grown in darkness or exposed to light, which triggers the expression of the regeneration gene marker ERF115 in neighbor cells close to damage. Auxin and stem cell niche (SCN) gene expression as well as structural analysis revealed that NRPB2 maintains SCN activity through distribution of PIN transporters in root tissues. Wild-type seedlings regenerated the root tip after excision of the QC and SCN, but nrpb2-3 mutants did not rebuild the missing tissues, and this process could be genotypified using pERF115:GFP, DR5:GFP, and pWOX5:GFP reporter constructs. The levels of reactive oxygen species increased in the mutants four days after germination and strongly decreased at later times, whereas nitric oxide accumulated as the root tip differentiates. These results show the importance of the transcriptional machinery for root organogenesis, cell viability, and regenerative capacity for reconstruction of tissues and organs upon injury.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Survival , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Meristem/metabolism , Plant Roots/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Stem Cell Niche
18.
Plant Sci ; 314: 111117, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34895546

ABSTRACT

The MEDIATOR complex influences the transcription of genes acting as a RNA pol II co-activator. The MED16 subunit has been related to low phosphate sensing in roots, but how it influences the overall plant growth and root development remains unknown. In this study, we compared the root growth of Arabidopsis wild-type (WT), and two alleles of MED16 (med16-2 and med16-3) mutants in vitro. The MED16 loss-of-function seedlings showed longer primary roots with higher cell division capacity of meristematic cells, and an increased number of lateral roots than WT plants, which correlated with improved biomass accumulation. The auxin response reported by DR5:GFP fluorescence was comparable in WT and med16-2 root tips, but strongly decreased in pericycle cells and lateral root primordia in the mutants. Dose-response analysis supplementing indole-3-acetic acid (IAA), or the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA), indicated normal responses to auxin in the med16-2 and med16-3 mutants regarding primary root growth and lateral root formation, but strong resistance to NPA in primary roots, which could be correlated with cell division and elongation. Expression analysis of pPIN1::PIN1::GFP, pPIN3::PIN3::GFP, pIAA14:GUS, pIAA28:GUS and 35S:MED16-GFP suggests that MED16 could mediate auxin signaling. Our data imply that an altered auxin response in the med16 mutants is not necessarily deleterious for overall growth and developmental patterning and may instead directly regulate basic cellular programmes.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Signal Transduction/drug effects , Biomass , Cell Division/drug effects , Cell Division/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Mutation
19.
Plant Mol Biol ; 108(1-2): 77-91, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34855067

ABSTRACT

KEY MESSAGE: The role of the root cap in the plant response to phosphate deprivation has been scarcely investigated. Here we describe early structural, physiological and molecular changes prior to the determinate growth program of the primary roots under low Pi and unveil a critical function of the transcription factor SOMBRERO in low Pi sensing. Mineral nutrient distribution in the soil is uneven and roots efficiently adapt to improve uptake and assimilation of sparingly available resources. Phosphate (Pi) accumulates in the upper layers and thus short and branched root systems proliferate to better exploit organic and inorganic Pi patches. Here we report an early adaptive response of the Arabidopsis primary root that precedes the entrance of the meristem into the determinate developmental program that is a hallmark of the low Pi sensing mechanism. In wild-type seedlings transferred to low Pi medium, the quiescent center domain in primary root tips increases as an early response, as revealed by WOX5:GFP expression and this correlates with a thicker root tip with extra root cap cell layers. The halted primary root growth in WT seedlings could be reversed upon transfer to medium supplemented with 250 µM Pi. Mutant and gene expression analysis indicates that auxin signaling negatively affects the cellular re-specification at the root tip and enabled identification of the transcription factor SOMBRERO as a critical element that orchestrates both the formation of extra root cap layers and primary root growth under Pi scarcity. Moreover, we provide evidence that low Pi-induced root thickening or the loss-of-function of SOMBRERO is associated with expression of phosphate transporters at the root tip. Our data uncover a developmental window where the root tip senses deprivation of a critical macronutrient to improve adaptation and surveillance.


Subject(s)
Arabidopsis Proteins/physiology , Indoleacetic Acids/metabolism , Phosphates/deficiency , Plant Growth Regulators/physiology , Plant Root Cap/growth & development , Transcription Factors/physiology , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/physiology , Gene Expression Regulation, Plant , Meristem/growth & development , Meristem/metabolism , Meristem/physiology , Plant Root Cap/cytology , Plant Root Cap/metabolism , Signal Transduction
20.
Protoplasma ; 259(5): 1139-1155, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34792622

ABSTRACT

The interaction of plant roots with bacteria is influenced by chemical signaling, where auxins play a critical role. Auxins exert positive or negative influences on the plant traits responsible of root architecture configuration such as root elongation and branching and root hair formation, but how bacteria that modify the plant auxin response promote or repress growth, as well as root structure, remains unknown. Here, we isolated and identified via molecular and electronic microscopy analysis a Micrococcus luteus LS570 strain as a plant growth promoter that halts primary root elongation in Arabidopsis seedlings and strongly triggers root branching and absorptive potential. The root biomass was exacerbated following root contact with bacterial streaks, and this correlated with inducible expression of auxin-related gene markers DR5:GUS and DR5:GFP. Cellular and structural analyses of root growth zones indicated that the bacterium inhibits both cell division and elongation within primary root tips, disrupting apical dominance, and as a consequence differentiation programs at the pericycle and epidermis, respectively, triggers the formation of longer and denser lateral roots and root hairs. Using Arabidopsis mutants defective on auxin signaling elements, our study uncovers a critical role of the auxin response factors ARF7 and ARF19, and canonical auxin receptors in mediating both the primary root and lateral root response to M. luteus LS570. Our report provides very basic information into how actinobacteria interact with plants and direct evidence that the bacterial genus Micrococcus influences the cellular and physiological plant programs ultimately responsible of biomass partitioning.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Micrococcus luteus/metabolism , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...