Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38796665

ABSTRACT

This note aims to inspire through providing a personal view of the development and potential Drug Delivery Nanocarriers functionalized with polythyleneglycol (PEG). This polymer has been used extensively in Pharmaceutical Technology in a variety of compositions, including polyethylene oxide (PEO)-based surfactants. However, the concept of PEGylation, which started in the 70's, differs from the functionality of a surfactant, already discloses in the 50's. Here, we strictly adhere to the biological functionality of PEGylated nanocarriers intended to have a reduced interaction with proteins and, therefore, modify their biodistribution as well as facilitate their diffusion across mucus and other biological barriers. We analyze how this concept has evolved over the years and the benefit obtained so far in terms of marketed nanomedicines and provide the readers with a prospect view of the topic.

2.
Pharmaceutics ; 15(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37376070

ABSTRACT

The COVID-19 pandemic has made it clear that there is a crucial need for the design and development of antiviral agents that can efficiently reduce the fatality rate caused by infectious diseases. The fact that coronavirus mainly enters through the nasal epithelial cells and spreads through the nasal passage makes the nasal delivery of antiviral agents a promising strategy not only to reduce viral infection but also its transmission. Peptides are emerging as powerful candidates for antiviral treatments, showing not only a strong antiviral activity, but also improved safety, efficacy, and higher specificity against viral pathogens. Based on our previous experience on the use of chitosan-based nanoparticles to deliver peptides intra-nasally the current study aimed to explore the delivery of two-novel antiviral peptides making use of nanoparticles consisting of HA/CS and DS/CS. The antiviral peptides were chemically synthesized, and the optimal conditions for encapsulating them were selected through a combination of physical entrapment and chemical conjugation using HA/CS and DS/CS nanocomplexes. Finally, we evaluated the in vitro neutralization capacity against SARS-CoV-2 and HCoV-OC43 for potential use as prophylaxis or therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...