Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 31(8): 2453-2474, 2022 04.
Article in English | MEDLINE | ID: mdl-35146829

ABSTRACT

Changes in life history traits are often considered speciation triggers and can have dramatic effects on the evolutionary history of a lineage. Here, we examine the consequences of changes in two life history traits, host-type and phoresy, in the hypermetamorphic blister beetles, Meloidae. Subfamilies Nemognathinae and Meloinae exhibit a complex life cycle involving multiple metamorphoses and parasitoidism. Most genera and tribes are bee-parasitoids, and include phoretic or nonphoretic species, while two tribes feed on grasshopper eggs. These different life strategies are coupled with striking differences in species richness among clades. We generated a mitogenomic phylogeny for Nemognathinae and Meloinae, confirming the monophyly of these two clades, and used the dated phylogeny to explore the association between diversification rates and changes in host specificity and phoresy, using state-dependent speciation and extinction (SSE) models that include the effect of hidden traits. To account for the low taxon sampling, we implemented a phylogenetic-taxonomic approach based on birth-death simulations, and used a Bayesian framework to integrate parameter and phylogenetic uncertainty. Results show that the ancestral hypermetamorphic Meloidae was a nonphoretic bee-parasitoid, and that transitions towards a phoretic bee-parasitoid and grasshopper parasitoidism occurred multiple times. Nonphoretic bee-parasitoid lineages exhibit significantly higher relative extinction and lower diversification rates than phoretic bee-and grasshopper-parasitoids, but no significant differences were found between the latter two strategies. This suggests that Orthopteran host shifts and phoresy contributed jointly to the evolutionary success of the parasitoid meloidae. We also demonstrate that SSE models can be used to identify hidden traits coevolving with the focal trait in driving a lineage's diversification dynamics.


Subject(s)
Coleoptera , Animals , Bayes Theorem , Biological Evolution , Coleoptera/genetics , Genetic Speciation , Phenotype , Phylogeny
2.
Mol Phylogenet Evol ; 130: 156-168, 2019 01.
Article in English | MEDLINE | ID: mdl-30273756

ABSTRACT

Untangling the relationship between morphological evolution and lineage diversification is key to explain global patterns of phenotypic disparity across the Tree of Life. Few studies have examined the relationship between high morphological disparity and extinction. In this study, we infer phylogenetic relationships and lineage divergence times within Eupomphini (Meloidae), a tribe of blister beetles endemic to the arid zone of North America, which exhibits a puzzling pattern of very low species richness but wild variation in morphological diversity across extant taxa. Using Bayesian and maximum likelihood inference, we estimate diversification and phenotypic evolutionary rates and infer the time and magnitude of extinction rate shifts and mass extinction events. Our results suggest that Eupomphini underwent an event of ancient radiation coupled with rapid morphological change, possibly linked to the loss of the evolutionary constraint in the elytral shape. A high extinction background associated to the Miocene-Pliocene transition decimated the diversity within each major clade, resulting in the species-poor genera observed today. Our study supports a connection between high extinction rates and patterns of decoupled phenotypic evolution and lineage diversification, and the possibility of a radiation in the absence of ecological release.


Subject(s)
Biodiversity , Coleoptera/classification , Extinction, Biological , Phylogeny , Animals , Bayes Theorem , Biological Evolution , Coleoptera/anatomy & histology , Coleoptera/genetics , North America , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...