Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; : 132898, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844280

ABSTRACT

This study explored the photocatalytic hydrogen evolution reaction (HER) using novel biohydrogel composites comprising chitosan, and a photocatalyst consisting in TiO2 P25 decorated with Au and/or Cu mono- and bimetallic nanoparticles (NPs) to boost its optical and catalytic properties. Low loads of Cu and Au (1 mol%) were incorporated onto TiO2 via a green photodeposition methodology. Characterization techniques confirmed the incorporation of decoration metals as well as improvements in the light absorption properties in the visible light interval (λ > 390 nm) and electron transfer capability of the semiconductors. Thereafter, Au and/or Cu NP-supported TiO2 were incorporated into chitosan-based physically crosslinked hydrogels revealing significant interactions between chitosan functional groups (hydroxyls, amines and amides) with the NPs to ensure its encapsulation. These materials were evaluated as photocatalysts for the HER using water and methanol mixtures under simulated sunlight and visible light irradiation. Sample CuAuTiO2/ChTPP exhibited a maximum hydrogen generation of 1790 µmol g-1 h-1 under simulated sunlight irradiation, almost 12-folds higher compared with TiO2/ChTPP. Also, the nanocomposites revealed a similar tendency under visible light with a maximum hydrogen production of 590 µmol g-1 h-1. These results agree with the efficiency of photoinduced charge separation revealed by transient photocurrent and EIS.

2.
ChemSusChem ; : e202400062, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427722

ABSTRACT

Developing sustainable cost-effective strategies for valorization of field-spent granular activated carbon (s-GAC) from industrial water treatment has gained much interest. Here, we report a cost-effective strategy for the regeneration of s-GAC as an adsorbent in a large-scale drinking water treatment plant and used as an efficient and durable ozonation catalyst in water. To achieve this, a series of samples is prepared by subjecting s-GAC to thermally controlled combustion treatments with and without pyrolysis. The catalytic performance of the optimized sample is evaluated for oxalic acid degradation as the model pollutant under batch (>15 h) and continuous flow operations (>200 h). The partially deactivated catalyst upon reuse is restored by thermal treatment. Electron paramagnetic resonance and selective quenching experiments show the formation of singlet oxygen (1O2) during catalytic ozonation. The GAC-ozonation catalyst is efficient to minimize the formation of chlorinated disinfection by-products like trihalomethanes and haloacetic acids in an urban wastewater effluent.

3.
Nanomaterials (Basel) ; 12(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36234622

ABSTRACT

Light can boost ozone efficiency in advanced oxidation processes (AOPs), either by direct ozone photolysis with UV light or by using a photocatalyst that can be excited with UV-Vis or solar light. The present review summarizes literature data on the combination of ozone and the g-C3N4 photocatalyst for the degradation of probe molecules in water, including oxalic, p-hydroxybenzoic and oxamic acids as well as ciprofloxacin and parabens. g-C3N4 is a metal-free visible-light photocatalyst based on abundant elements that establishes a synergistic effect with ozone, the efficiency of the combination of the photocatalysis and ozonation being higher than the sum of the two treatments independently. Available data indicate that this synergy derives from the higher efficiency in the generation of hydroxyl radicals due to the efficient electron quenching by O3 of photogenerated conduction band electrons in the g-C3N4 photocatalyst. Given the wide use of ozonizers in water treatment, it is proposed that their implementation with g-C3N4 photocatalysis could also boost ozone efficiency in the AOPs of real waste waters.

SELECTION OF CITATIONS
SEARCH DETAIL
...