Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 368(6498): 1477-1481, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32587019

ABSTRACT

The closet exoplanets to the Sun provide opportunities for detailed characterization of planets outside the Solar System. We report the discovery, using radial velocity measurements, of a compact multiplanet system of super-Earth exoplanets orbiting the nearby red dwarf star GJ 887. The two planets have orbital periods of 9.3 and 21.8 days. Assuming an Earth-like albedo, the equilibrium temperature of the 21.8-day planet is ~350 kelvin. The planets are interior to, but close to the inner edge of, the liquid-water habitable zone. We also detect an unconfirmed signal with a period of ~50 days, which could correspond to a third super-Earth in a more temperate orbit. Our observations show that GJ 887 has photometric variability below 500 parts per million, which is unusually quiet for a red dwarf.

2.
Science ; 365(6460): 1441-1445, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31604272

ABSTRACT

Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.

3.
Nature ; 563(7731): 365-368, 2018 11.
Article in English | MEDLINE | ID: mdl-30429552

ABSTRACT

Barnard's star is a red dwarf, and has the largest proper motion (apparent motion across the sky) of all known stars. At a distance of 1.8 parsecs1, it is the closest single star to the Sun; only the three stars in the α Centauri system are closer. Barnard's star is also among the least magnetically active red dwarfs known2,3 and has an estimated age older than the Solar System. Its properties make it a prime target for planetary searches; various techniques with different sensitivity limits have been used previously, including radial-velocity imaging4-6, astrometry7,8 and direct imaging9, but all ultimately led to negative or null results. Here we combine numerous measurements from high-precision radial-velocity instruments, revealing the presence of a low-amplitude periodic signal with a period of 233 days. Independent photometric and spectroscopic monitoring, as well as an analysis of instrumental systematic effects, suggest that this signal is best explained as arising from a planetary companion. The candidate planet around Barnard's star is a cold super-Earth, with a minimum mass of 3.2 times that of Earth, orbiting near its snow line (the minimum distance from the star at which volatile compounds could condense). The combination of all radial-velocity datasets spanning 20 years of measurements additionally reveals a long-term modulation that could arise from a stellar magnetic-activity cycle or from a more distant planetary object. Because of its proximity to the Sun, the candidate planet has a maximum angular separation of 220 milliarcseconds from Barnard's star, making it an excellent target for direct imaging and astrometric observations in the future.

4.
J Dent Res ; 96(7): 832-839, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28571526

ABSTRACT

Drug-induced gingival enlargement (GE) is a frequent adverse effect observed in patients treated with anticonvulsant, immunosuppressant, and some antihypertensive medications-the antiepileptic phenytoin being the main drug associated with GE due to its high incidence (around 50%). The molecular mechanisms behind drug-induced gingival overgrowth are still unknown. By reverse transcription polymerase chain reaction, we demonstrate that the calcium-permeable ion channels TRPA1, TRPV1, and its capsaicin-insensitive isoform TRPV1b are expressed in human gingival fibroblasts (HGFs), the most abundant cellular type in periodontal tissue. Cultured HGFs responded with intracellular calcium elevations to phenytoin and to the canonical TRPA1 agonist allyl isothiocyanate. Application of phenytoin activated a nonselective cationic current in HGFs with a typical signature for TRPA1 channels. Moreover, this activation was blocked by HC030031, a specific TRPA1 blocker. Similarly, the use of shRNAs against hTRPA1 in HGFs reduced TRPA1 expression and activation by phenytoin. In addition, we show that phenytoin increased intracellular calcium levels in cells transfected with mouse or human TRPA1 channels. Responses to phenytoin were not observed in untransfected cells or cells expressing TRPM8 or TRPV1. The activation of HGFs by phenytoin was markedly reduced in the presence of antioxidant vitamins: ascorbic acid, folic acid, and α-tocopherol. By performing cell proliferation assays, we found that phenytoin did not augment the proliferation rate of HGFs. In contrast, alcian blue and picrosirius red staining of long-term HGFs cultures indicated that phenytoin induces extracellular matrix accumulation of collagen. Collectively, these findings support an important role of TRPA1 channels in phenytoin-induced GE, provide insight into the pathophysiologic mechanism, and offer novel therapeutic opportunities for its treatment.


Subject(s)
Anticonvulsants/adverse effects , Calcium Channels/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Gingiva/cytology , Gingival Overgrowth/chemically induced , Nerve Tissue Proteins/metabolism , Phenytoin/adverse effects , TRPV Cation Channels/metabolism , Transient Receptor Potential Channels/metabolism , Acetanilides/pharmacology , Animals , Antioxidants/pharmacology , Blotting, Western , Cell Line , Humans , Patch-Clamp Techniques , Purines/pharmacology , Real-Time Polymerase Chain Reaction , Staining and Labeling , TRPA1 Cation Channel
SELECTION OF CITATIONS
SEARCH DETAIL
...