Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(15): e2320505121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38568977

ABSTRACT

The presynaptic SNARE-complex regulator complexin (Cplx) enhances the fusogenicity of primed synaptic vesicles (SVs). Consequently, Cplx deletion impairs action potential-evoked transmitter release. Conversely, though, Cplx loss enhances spontaneous and delayed asynchronous release at certain synapse types. Using electrophysiology and kinetic modeling, we show that such seemingly contradictory transmitter release phenotypes seen upon Cplx deletion can be explained by an additional of Cplx in the control of SV priming, where its ablation facilitates the generation of a "faulty" SV fusion apparatus. Supporting this notion, a sequential two-step priming scheme, featuring reduced vesicle fusogenicity and increased transition rates into the faulty primed state, reproduces all aberrations of transmitter release modes and short-term synaptic plasticity seen upon Cplx loss. Accordingly, we propose a dual presynaptic function for the SNARE-complex interactor Cplx, one as a "checkpoint" protein that guarantees the proper assembly of the fusion machinery during vesicle priming, and one in boosting vesicle fusogenicity.


Subject(s)
Synapses , Synaptic Vesicles , Synapses/metabolism , Synaptic Vesicles/metabolism , Action Potentials , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism , Synaptic Transmission/physiology
2.
Adv Neurobiol ; 33: 255-285, 2023.
Article in English | MEDLINE | ID: mdl-37615870

ABSTRACT

Neurotransmitter release is a spatially and temporally tightly regulated process, which requires assembly and disassembly of SNARE complexes to enable the exocytosis of transmitter-loaded synaptic vesicles (SVs) at presynaptic active zones (AZs). While the requirement for the core SNARE machinery is shared by most membrane fusion processes, SNARE-mediated fusion at AZs is uniquely regulated to allow very rapid Ca2+-triggered SV exocytosis following action potential (AP) arrival. To enable a sub-millisecond time course of AP-triggered SV fusion, synapse-specific accessory SNARE-binding proteins are required in addition to the core fusion machinery. Among the known SNARE regulators specific for Ca2+-triggered SV fusion are complexins, which are almost ubiquitously expressed in neurons. This chapter summarizes the structural features of complexins, models for their molecular interactions with SNAREs, and their roles in SV fusion.


Subject(s)
Membrane Fusion , Synaptic Vesicles , Humans , Synaptic Transmission , Exocytosis , SNARE Proteins
3.
Neuron ; 109(24): 3980-4000.e7, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34706220

ABSTRACT

During ongoing presynaptic action potential (AP) firing, transmitter release is limited by the availability of release-ready synaptic vesicles (SVs). The rate of SV recruitment (SVR) to release sites is strongly upregulated at high AP frequencies to balance SV consumption. We show that Munc13-1-an essential SV priming protein-regulates SVR via a Ca2+-phospholipid-dependent mechanism. Using knockin mouse lines with point mutations in the Ca2+-phospholipid-binding C2B domain of Munc13-1, we demonstrate that abolishing Ca2+-phospholipid binding increases synaptic depression, slows recovery of synaptic strength after SV pool depletion, and reduces temporal fidelity of synaptic transmission, while increased Ca2+-phospholipid binding has the opposite effects. Thus, Ca2+-phospholipid binding to the Munc13-1-C2B domain accelerates SVR, reduces short-term synaptic depression, and increases the endurance and temporal fidelity of neurotransmission, demonstrating that Munc13-1 is a core vesicle priming hub that adjusts SV re-supply to demand.


Subject(s)
Phospholipids , Synaptic Transmission , Action Potentials , Animals , Calcium/metabolism , Mice , Neuronal Plasticity/physiology , Phospholipids/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism
4.
Neuron ; 108(5): 843-860.e8, 2020 12 09.
Article in English | MEDLINE | ID: mdl-32991831

ABSTRACT

Electron microscopy can resolve synapse ultrastructure with nanometer precision, but the capture of time-resolved, activity-dependent synaptic membrane-trafficking events has remained challenging, particularly in functionally distinct synapses in a tissue context. We present a method that combines optogenetic stimulation-coupled cryofixation ("flash-and-freeze") and electron microscopy to visualize membrane trafficking events and synapse-state-specific changes in presynaptic vesicle organization with high spatiotemporal resolution in synapses of cultured mouse brain tissue. With our experimental workflow, electrophysiological and "flash-and-freeze" electron microscopy experiments can be performed under identical conditions in artificial cerebrospinal fluid alone, without the addition of external cryoprotectants, which are otherwise needed to allow adequate tissue preservation upon freezing. Using this approach, we reveal depletion of docked vesicles and resolve compensatory membrane recycling events at individual presynaptic active zones at hippocampal mossy fiber synapses upon sustained stimulation.


Subject(s)
Excitatory Postsynaptic Potentials/physiology , Hippocampus/physiology , Hippocampus/ultrastructure , Synaptic Membranes/physiology , Synaptic Membranes/ultrastructure , Animals , Gene Knock-In Techniques/methods , Mice , Mice, Transgenic , Microscopy, Electron/methods , Microtomy/methods , Organ Culture Techniques , Protein Transport/physiology
5.
Cell Rep ; 26(10): 2521-2530.e5, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30840877

ABSTRACT

SNARE-mediated synaptic vesicle (SV) fusion is controlled by multiple regulatory proteins that determine neurotransmitter release efficiency. Complexins are essential SNARE regulators whose mode of action is unclear, as available evidence indicates positive SV fusion facilitation and negative "fusion clamp"-like activities, with the latter occurring only in certain contexts. Because these contradictory findings likely originate in part from different experimental perturbation strategies, we attempted to resolve them by examining a conditional complexin-knockout mouse line as the most stringent genetic perturbation model available. We found that acute complexin loss after synaptogenesis in autaptic and mass-cultured hippocampal neurons reduces SV fusion probability and thus abates the rates of spontaneous, synchronous, asynchronous, and delayed transmitter release but does not affect SV priming or cause "unclamping" of spontaneous SV fusion. Thus, complexins act as facilitators of SV fusion but are dispensable for "fusion clamping" in mammalian forebrain neurons.


Subject(s)
Synaptic Transmission/genetics , Synaptic Vesicles/genetics , Animals , Mice , Mice, Knockout
6.
Brain Res Bull ; 129: 74-81, 2017 03.
Article in English | MEDLINE | ID: mdl-27601093

ABSTRACT

During the embryonic development of the nervous system there is a massive formation of synapses. However, the exuberant connectivity present after birth must be pruned during postnatal growth to optimize the function of neuronal circuits. Whilst glial cells play a fundamental role in the formation of early synaptic contacts, their contribution to developmental modifications of established synapses is not well understood. The present review aims to highlight the various roles of glia in the developmental refinement of embryonic synaptic connectivity. We summarize recent evidences linking secretory abilities of glial cells to the disassembly of synaptic contacts that are complementary of a well-established phagocytic role. Considering a theoretical framework, it is discussed how release of glial molecules could be relevant to the developmental refinement of synaptic connectivity. Finally, we propose a three-stage model of synapse elimination in which neurons and glia are functionally associated to timely eliminate synapses.


Subject(s)
Neuroglia/physiology , Neurons/physiology , Synapses/physiology , Animals , Models, Neurological , Olfactory Bulb/growth & development , Olfactory Bulb/physiology
7.
Mol Cell Neurosci ; 49(3): 364-74, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22306863

ABSTRACT

Secreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular protein produced by glial cells. Although it is highly expressed in synaptogenic areas in the developing nervous system, it is still unclear whether this molecule displays an action on synaptic activity. We show that nanomolar concentrations of SPARC favour a more efficient synapse formation and increase short term depression in single cell cholinergic microcultures. The change in synaptic plasticity, which is also observed when SPARC is locally secreted on stable synapses for 24-48 h, is caused by a high release probability and a reduction in the size of the rapidly releasable pool of vesicles. Both features are attributable to synapses operating at an immature stage as demonstrated by correlative electrophysiology and electron microscopy experiments. Presynaptic terminals developed in the presence of SPARC display few cytoplasmic vesicles and two to threefold decrease in the number of docked vesicles at active zones. At the postsynaptic level, the analysis of miniature excitatory postsynaptic currents suggests SPARC has little effect on the number of nicotinic receptors but might alter their composition. The widespread distribution of SPARC makes current findings potentially relevant to other excitatory synapses and development of neuronal circuits.


Subject(s)
Cholinergic Fibers/metabolism , Neurons/metabolism , Neurons/ultrastructure , Osteonectin/metabolism , Presynaptic Terminals/metabolism , Presynaptic Terminals/ultrastructure , Animals , Electrophysiology , Excitatory Postsynaptic Potentials/physiology , Microscopy, Electron , Neuroglia/metabolism , Neuronal Plasticity/physiology , Rats , Rats, Sprague-Dawley , Synapses/metabolism , Synapses/ultrastructure , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Synaptic Vesicles/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...