Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Biochem Parasitol ; 247: 111433, 2022 01.
Article in English | MEDLINE | ID: mdl-34822916

ABSTRACT

Toxoplasma gondii (T. gondii) is a parasite common in pregnancy. Monocytes and macrophages are a significant immunologic barrier against T. gondii by boosting up inflammation. This outcome is highly regulated by signaling pathways such as MAPK (ERK1/2) and PI3K (AKT), necessary in cell growth and proliferation. It may be associated with the hormonal receptors' modulation by T. gondii (Estrogen Receptor (ER)-α, ERß, G Protein-coupled ER (GPER), and Prolactin Receptor (PRLR)), as previously reported by our research group. 17ß-estradiol also activates MAPK and PI3K; however, its combined effect in THP-1 monocytes and macrophages, infected with T. gondii, has not yet been evaluated. This study aimed to evaluate the combined effect of 17ß-estradiol in the activation of signaling pathways using a model of THP-1 monocytes and macrophages infected with T. gondii. THP-1 monocytes were cultured and differentiated into macrophages. Inhibition of AKT and ERK1/2 was performed with specific inhibitors. Stimuli were performed with 17ß-estradiol (10 nM), T. gondii (20,000 tachyzoites), and both conditions for 48 h. Proteins were extracted and quantified, and Western Blot assays were performed. 17ß-estradiol performed activation of ERK1/2 and AKT in T. gondii-infected macrophages. 17ß-estradiol modulated the expression of hormonal receptors in infected cells: increases the PRLR and PrgR in T. gondii-infected macrophages and decreases the PRLR and ERα in T. gondii-infected monocytes. As for GPER, its expression is abolished by T. gondii, and 17ß-estradiol cannot restore it. Finally, the blockage of ERK and AKT pathways modified the expression of hormonal receptors. In conclusion, 17ß-estradiol modifies the receptors of T. gondii-infected THP1 macrophages and monocytes in an ERK/AKT dependent manner.


Subject(s)
Toxoplasma , Estradiol/pharmacology , Macrophages/metabolism , Monocytes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Toxoplasma/metabolism
2.
Cancer Cell Int ; 19: 227, 2019.
Article in English | MEDLINE | ID: mdl-31507337

ABSTRACT

BACKGROUND: Cervical cancer (CC) is the second most common cancer in less developed countries and the second leading cause of death by cancer in women worldwide. The 99% of CC patients are infected with the Human Papilloma Virus (HPV), being HPV16 and HPV18 infection the most frequent. Even though HPV is considered to be a necessary factor for the development of CC, it is not enough, as it requires the participation of other factors such as the hormonal ones. Several studies have demonstrated the requirement of estrogen and its receptors (ERα, ERß, and GPER) in the precursor lesions progress towards CC. Also, prolactin (PRL) and its receptor (PRLR) have been associated with CC. The molecular mechanisms underlying the cooperation of these hormones with the viral oncoproteins are not well elucidated. For this reason, this study focused on analyzing the contribution of 17ß-estradiol (E2), PRL, and HPV on the expression and localization of hormone receptors, as well as to evaluate whether these hormones may promote greater expression of HPV oncogenes and contribute to tumor progression. METHODS: qPCR was used to evaluate the effect of E2 and PRL on the expression of E6 and E7 oncoproteins in HeLa and SiHa cervical cancer cells lines. HaCaT cells were transduced with the viral oncogenes E6 and E7 from HPV 16 and 18. ERα, ERß, GPER, and PRLR expression and localization were evaluated by qPCR, Western blot and immunofluorescence. RESULTS: E2 and PRL induce E6/E7 oncogenes expression in HeLa and SiHa cells. E6 and E7 oncogenes of HPV16/18 significantly increased the protein expression of ERα, GPER, and PRLR. ERß was positively regulated only by E6 oncogenes of HPV16/18. Besides, some of these oncogenes modify the location of PRLR toward cytoplasm, and ERα, ERß, and GPER mainly to the nucleus. CONCLUSION: Our studies suggest that the mutual regulation between E2, PRL, and HPV oncogenes could cooperate with the carcinogenesis process in CC.

3.
Exp Parasitol ; 204: 107721, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31288023

ABSTRACT

BACKGROUND: Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan able to infect humans and it is common in pregnant women. During pregnancy and lactation, there are changes in the concentration of 17ß-estradiol (E2), progesterone (Prg), and prolactin (PRL). It is known that a proinflamatory response reduces the susceptibility to be infected, and this response may change according to hormonal impairment. Monocytes and macrophages are the main barrier against many intracellular microorganisms, due to their ability to produce cytokines. The aim of this work was to determine the effect of E2, progesterone, and PRL on the infective capacity of T. gondii, proinflamatory immune response modulation and the expression of hormonal receptors on THP-1 cell stimulated with T. gondii. METHODS: The THP-1 cells were infected with 1500 T. gondii tachyzoites, of RH strain. Stimuli were conducted with recombinant PRL (200 ng/mL), E2 (40 nM) y Prg (40 nM). MTT assays were performed to evaluate cellular viability. Western blot assays were carried out to evaluate the expression of the hormonal receptors (PRLR, ERα, and ERß). Cytokines produced were measured with a magnetic bead kit directed to 17 cytokines. RESULTS: Stimuli with E2 and Prg increased T. gondii infection in monocytes after 48 h; however, no differences in infection were observed in PRL stimulus. The E2 decreased the secretion of IL-12 and IL-1ß and PRL did not modify the production of these cytokines in THP-1 cells stimulated with T. gondii; however, both hormones increased the production of IL-10. Besides, PRL augmented the production of IL-4 and IL-13. In contrast, Prg reduced these cytokines. Our results show that T. gondii induces the expression of ERα and ERß and lowers PRLR. The hormones modify the expression of the receptors of other hormones: Prg decreases PRLR, ERß and increases ERα; E2 diminishes PRLR; and PRL decreases ERα and ERß expression. CONCLUSION: The hormones can increase T. gondii infection and could be mediating an anti-inflammatory response in THP-1 cells. T. gondii induces changes in the expression of hormonal receptors.


Subject(s)
Cytokines/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Receptors, Prolactin/metabolism , THP-1 Cells/metabolism , Toxoplasma/physiology , Animals , Coloring Agents , Estradiol/metabolism , Female , Humans , Mice , Progesterone/metabolism , Prolactin/metabolism , Protein Isoforms/metabolism , THP-1 Cells/immunology , THP-1 Cells/parasitology , Tetrazolium Salts , Thiazoles , Toxoplasma/growth & development
4.
Anticancer Agents Med Chem ; 19(6): 783-791, 2019.
Article in English | MEDLINE | ID: mdl-30727915

ABSTRACT

BACKGROUND: The effect of estrogen has been traditionally studied through the modulation of its alpha and beta nuclear receptors; however, the G Protein-Coupled Estrogen Receptor (GPER) has been recently involved in the pathology of numerous tumors. Although the study of GPER in cervical cancer has begun, its contribution still remains to be completely evaluated. OBJECTIVE: The purpose of this work was to determine the expression of this receptor in different degrees of cervical lesions and whether the stimulation with its specific agonist (G-1) modulated mechanisms of cell survival or cell death in cervical cancer cells. METHODS: Sections of 44 formalin-fixed paraffin-embedded blocks from patients were analyzed by automated immunohistochemistry. After the stimulation with G-1, proliferation was evaluated by the xCELLigence technology, the integrity of the mitochondrial membrane permeability by MitoCaptureTM fluorescence staining, apoptosis by flow cytometry, and senescence by the senescence-associated ß-galactosidase kit. RESULTS: GPER was widely expressed in cervical cancer but not in its precursor lesions. The staining was predominantly cytoplasmic, although it was also important in the nucleus of the epithelial cells. G-1 inhibited proliferation, decreased the mitochondrial permeability, and increased the percentage of apoptosis in SiHa, HeLa, and C-33A. Only in C-33A, an increase of the cells in necrosis was observed, whereas SiHa was the only cell line in which senescence was evidenced. CONCLUSION: GPER is a receptor associated with cervical cancer that inhibits the growth and induces different mechanisms of death in cells derived from uterine cervical cancer. It suggests that GPER can be considered a pharmacological target that prevents the development of cervical carcinogenesis.


Subject(s)
Receptors, Estrogen/biosynthesis , Receptors, G-Protein-Coupled/biosynthesis , Uterine Cervical Neoplasms/metabolism , Apoptosis , Cell Death , Cell Proliferation , Cells, Cultured , Female , Humans , Mitochondrial Membranes/metabolism , Uterine Cervical Neoplasms/pathology
5.
Oncol Rep ; 40(6): 3781-3793, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30272319

ABSTRACT

Estrogens and estrogen receptors (ERs), such as ERα and ERß, prolactin (PRL) and prolactin receptor (PRLR) have been reported to be involved in the physiopathology of uterine cervical cancer (UCC). The 60 kDa PRL is an isoform of PRL, which is produced by UCC­derived cells. The present study aimed to evaluate the expression of hormonal receptors in different degrees of cervical lesions, and to determine whether 60 kDa PRL and 17ß­estradiol (E2) modulated cell survival and metabolism in UCC cells, and in HaCaT cells transduced with human papillomavirus (HPV) 16 and 18 E6/E7 oncogenes. ERα, ERß, PRLR, Ki67 and B­cell lymphoma 2 expression levels were analyzed in biopsies of precursor lesions and UCC using immunohistochemistry. In addition, HeLa, SiHa and C33A cells, and transduced HaCaT cells, were stimulated with 60 kDa PRL, E2 or a combination of both. Proliferation was evaluated using the xCELLigence platform, apoptosis was analyzed by flow cytometry and cell metabolism was determined using the MTT assay. The results revealed that ERα, ERß, PRLR and Ki67 expression levels were increased during the progression of cancer. In vitro, 60 kDa PRL alone significantly increased proliferation of SiHa cells. Furthermore, E2 alone or in combination with 60 kDa PRL increased the sensitivity of SiHa cells to cisplatin and increased the percentage of apoptosis; in HaCaT cells, these treatment strategies had the opposite effect on cisplatin sensitivity. Treatment with E2 increased mitochondrial activity in HeLa and SiHa cells, and in HaCaT cells transduced with HPV 16 E6/E7 and HPV 18 E6 oncogenes. PRL had a similar effect on HeLa cells, and on HaCaT cells transduced with HPV 18 E6 and HPV 16 E7. The co­expression of these receptors demonstrated the hormonal dependence of UCC. In addition, E2 and the 60 kDa PRL significantly impacted the metabolism, but not the survival, of cells.


Subject(s)
Estradiol/pharmacology , Ki-67 Antigen/metabolism , Prolactin/pharmacology , Receptors, Estrogen/metabolism , Receptors, Prolactin/metabolism , Uterine Cervical Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Disease Progression , Down-Regulation , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , Protein Isoforms/pharmacology
6.
Oncol Rep ; 39(3): 1253-1260, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29399697

ABSTRACT

Prolactin (PRL) is associated with different types of cancer, such as cervical cancer. Recombinant PRL has antiapoptotic effect on cervical cancer cells, and it can also induce cytokine production on macrophages. A 60 kDa variant of PRL is produced by cervical cancer cells. The aim of the present study was to evaluate this variant's bioactivity, to test its effect on cervical cancer cell apoptosis, and to assess its ability to induce cytokine production on THP-1 macrophages. First, 60 kDa PRL was isolated and used to stimulate Nb2 cells. Later, apoptosis was measured after exposure to 60 kDa PRL. Finally, cytokines were measured on THP-1 stimulated supernatants. Our results show that 60 kDa PRL increased Nb2 cell proliferation. Apoptosis was decreased after stimuli with 60 kDa PRL in cervical cancer cells. IL-1ß and TNF-α are produced by THP-1 macrophages after stimuli. These results suggest that 60 kDa PRL produced by cervical cancer cells is able to reduce apoptosis in HeLa, SiHa and C-33A cells and induce IL-1ß and TNF-α production by THP-1 macrophages.


Subject(s)
Apoptosis , Cytokines/biosynthesis , Prolactin/physiology , Uterine Cervical Neoplasms/metabolism , Animals , Cell Line , Cell Line, Tumor , Female , HeLa Cells , Humans , Interleukin-1beta/biosynthesis , Macrophages/immunology , Prolactin/isolation & purification , Prolactin/metabolism , Protein Isoforms/isolation & purification , Protein Isoforms/metabolism , Protein Isoforms/physiology , Rats , Tumor Necrosis Factor-alpha/biosynthesis
7.
Cancer Cell Int ; 15: 83, 2015.
Article in English | MEDLINE | ID: mdl-26346346

ABSTRACT

BACKGROUND: Prolactin (PRL) has been implicated in the development of different types of cancer. However, signaling pathways might be activated depending on various forms of prolactin receptor (PRLR). JAK/STAT is an important pathway associated with PRL effects. The activation of JAK/STAT pathway might activate antiapoptotic genes that could importantly lead to progression of tumorigenesis. Recently, we have reported that PRL is associated with cell survival by inhibition of apoptosis and the precise activated signaling pathways for this process are still questioned. The purpose of this study was to evaluate the activation of different signaling pathways in response to PRL as well as to identify the induction of antiapoptotic genes. METHODS: Cervical cancer cell lines HeLa, SiHa and C-33 A were stimulated with PRL (200 ng/mL) for 30 and 60 min and non stimulated cells were used to measure basal protein expression. Inhibition assays were performed by using Jak2 specific inhibitor AG490, either alone or in combination with PRL for 48 h. Western blot were carried out to evaluate protein induction of the different signaling pathways and antiapoptotic proteins. Significant effects were determined by using ANOVA test. RESULTS: STAT3 was significantly activated in cervical cancer lines in comparison with non-tumorigenic keratinocytes HaCaT. No significant differences were found when analyzing MAPK and PI3K signaling pathways. An increase of antiapoptotic genes Bcl-xl, Bcl-2, survivin and Mcl-1 was observed after stimulus with PRL; however, after inhibition with AG490, the induction of antiapoptotic genes was decreased. CONCLUSION: Our data suggests that STAT3 is an important signaling pathway activated by PRL in cervical cancer cells and it modulates the induction of antiapoptotic genes. Blocking STAT3 could represent a possible therapeutic strategy in cervical cancer.

8.
Cancer Cell Int ; 13(1): 103, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24148306

ABSTRACT

BACKGROUND: The altered expression of prolactin (PRL) and its receptor (PRLR) has been implicated in breast and other types of cancer. There are few studies that have focused on the analysis of PRL/PRLR in cervical cancer where the development of neoplastic lesions is influenced by the variation of the hormonal status. The aim of this study was to evaluate the expression of PRL/PRLR and the effect of PRL treatment on cell proliferation and apoptosis in cervical cancer cell lines. RESULTS: High expression of multiple PRLR forms and PRLvariants of 60-80 kDa were observed in cervical cancer cell lines compared with non-tumorigenic keratinocytes evaluated by Western blot, immunofluorecence and real time PCR. Treatment with PRL (200 ng/ml) increased cell proliferation in HeLa cells determined by the MTT assay at day 3 and after 1 day a protective effect against etoposide induced apoptosis in HeLa, SiHa and C-33A cervical cancer cell lines analyzed by the TUNEL assay. CONCLUSIONS: Our data suggests that PRL/PRLR signaling could act as an important survival factor for cervical cancer. The use of an effective PRL antagonist may provide a better therapeutic intervention in cervical cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...