Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 22438, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789869

ABSTRACT

Microplastics (MPs), a new class of pollutants that pose a threat to aquatic biodiversity, are of increasing global concern. In tandem, the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causing the disease chytridiomycosis is emerging worldwide as a major stressor to amphibians. We here assess whether synergies exist between this infectious disease and MP pollution by mimicking natural contact of a highly susceptible species (midwife toads, Alytes obstetricans) with a Bd-infected reservoir species (fire salamanders, Salamandra salamandra) in the presence and absence of MPs. We found that MP ingestion increases the burden of infection by Bd in a dose-dependent manner. However, MPs accumulated to a greater extent in amphibians that were not exposed to Bd, likely due to Bd-damaged tadpole mouthparts interfering with MP ingestion. Our experimental approach showed compelling interactions between two emergent processes, chytridiomycosis and MP pollution, necessitating further research into potential synergies between these biotic and abiotic threats to amphibians.


Subject(s)
Batrachochytrium , Larva/microbiology , Microplastics/adverse effects , Water Pollutants/adverse effects , Animals , Anura , Biodiversity , Disease Susceptibility/etiology , Salamandra , Spain
2.
Nat Commun ; 12(1): 3700, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34140471

ABSTRACT

The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent.


Subject(s)
Biota , Ecosystem , Rivers , Animals , Biodiversity , Biomass , Body Size , Chironomidae/physiology , Climate , Ephemeroptera/physiology , Insecta/physiology , Plant Leaves/chemistry , Rainforest , Rivers/chemistry , Rivers/microbiology , Rivers/parasitology , Rivers/virology , Tropical Climate , Tundra
3.
Environ Pollut ; 285: 117243, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33962306

ABSTRACT

Understanding which factors affect the process of leaf litter decomposition is crucial if we are to predict changes in the functioning of stream ecosystems as a result of human activities. One major activity with known consequences on streams is agriculture, which is of particular concern in tropical regions, where forests are being rapidly replaced by crops. While pesticides are potential drivers of reduced decomposition rates observed in agricultural tropical streams, their specific effects on the performance of decomposers and detritivores are mostly unknown. We used a microcosm experiment to examine the individual and joint effects of an insecticide (chlorpyrifos) and a fungicide (chlorothalonil) on survival and growth of detritivores (Anchytarsus, Hyalella and Lepidostoma), aquatic hyphomycetes (AH) sporulation rate, taxon richness, assemblage structure, and leaf litter decomposition rates. Our results revealed detrimental effects on detritivore survival (which were mostly due to the insecticide and strongest for Hyalella), changes in AH assemblage structure, and reduced sporulation rate, taxon richness and microbial decomposition (mostly in response to the fungicide). Total decomposition was reduced especially when the pesticides were combined, suggesting that they operated differently and their effects were additive. Importantly, effects on decomposition were greater for single-species detritivore treatments than for the 3-species mixture, indicating that detritivore species loss may exacerbate the consequences of pesticides of stream ecosystem functioning.


Subject(s)
Fungicides, Industrial , Pesticides , Ecosystem , Fungicides, Industrial/toxicity , Humans , Pesticides/toxicity , Plant Leaves , Rivers
4.
Sci Adv ; 7(13)2021 03.
Article in English | MEDLINE | ID: mdl-33771867

ABSTRACT

Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes.

5.
Sci Rep ; 10(1): 19682, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184346

ABSTRACT

Plant litter decomposition is a key ecosystem process that can be altered by global changes such as biodiversity loss. These effects can be particularly important in detritus-based ecosystems, such as headwater streams, which are mainly fuelled by allochthonous plant litter inputs. However, experiments examining effects of plant diversity on litter decomposition in streams have not reached consensus about which measures of biodiversity are more relevant. We explored the influence of two of these measures, plant species richness (SR; monocultures vs. 3-species mixtures) and phylogenetic distance (PD; species belonging to the same family vs. different families), on leaf litter decomposition and associated processes and variables (nutrient dynamics, fungal biomass and detritivore growth), in a stream microcosm experiment using litter from 9 tree species belonging to 3 families. We found a negative effect of SR on decomposition (which contradicted the results of previous experiments) but a positive effect on fungal biomass. While PD did not affect decomposition, both SR and PD altered nutrient dynamics: there was greater litter and detritivore N loss in low-PD mixtures, and greater litter P loss and detritivore P gain in monocultures. This suggested that the number of species in mixtures and the similarity of their traits both modulated nutrient availability and utilization by detritivores. Moreover, the greater fungal biomass with higher SR could imply positive effects on detritivores in the longer term. Our results provide new insights of the functional repercussions of biodiversity loss by going beyond the often-explored relationship between SR and decomposition, and reveal an influence of plant species phylogenetic relatedness on nutrient cycling that merits further investigation.


Subject(s)
Biodegradation, Environmental , Biodiversity , Plant Physiological Phenomena , Plants/genetics , Ecosystem , Plants/classification , Rivers , Trees/physiology
6.
Sci Total Environ ; 745: 140950, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32731071

ABSTRACT

The expansion of agriculture is particularly worrying in tropical regions of the world, where native forests are being replaced by crops at alarming rates, with severe consequences for biodiversity and ecosystems. However, there is little information about the potential effects of agriculture on the functioning of tropical streams, which is essential if we are to assess the condition and ecological integrity of these ecosystems. We conducted a litter decomposition experiment in streams within a tropical catchment, which were subjected to different degrees of agricultural influence: low (protected area, PA), medium (buffer area, BA) and high (agricultural area, AA). We quantified decomposition rates of litter enclosed within coarse-mesh and fine-mesh bags, which allowed the distinction of microbial and detritivore-mediated decomposition pathways. We used litter of three riparian species representing a gradient in litter quality (Alnus acuminata > Ficus insipida > Quercus bumelioides), and examined detritivore assemblages through the contents of litterbags and benthic samples. We found that the increasing agricultural influence promoted microbial decomposition, probably due to nutrient-mediated stimulation; and inhibited detritivore-mediated and total decomposition because of reduced detritivore numbers, most likely caused by pesticides and sedimentation. Effects were evident for Alnus and Ficus, but not for Quercus, which was barely decomposed across the gradient. Our study provides key evidence about the impact of agriculture on tropical stream ecosystem functioning, which is associated to changes in stream assemblages and may have far-reaching repercussions for global biochemical cycles.


Subject(s)
Ecosystem , Rivers , Agriculture , Biodiversity , Plant Leaves
7.
J Environ Manage ; 263: 110425, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32179487

ABSTRACT

Fungicides can reach streams through runoff or adhered to leaf litter, and have the potential to adversely affect processes such as litter decomposition and associated communities. This study investigated the effects of chlorothalonil, a widely used fungicide, on litter decomposition, detritivorous invertebrates (larvae of the insect Sericostoma pyrenaicum) and aquatic hyphomycetes (AHs), using stream microcosms. We considered the single and combined effects of two exposure modes: waterborne fungicide (at two concentrations: 0.125 µg L-1 and 1.25 µg L-1) and litter previously sprayed with the fungicide (i.e., pre-treated litter, using the application dose concentration of 1250 µg L-1). We also assessed whether fungicide effects on invertebrates, AHs and decomposition varied among litter types (i.e., different plant species), and whether plant diversity mitigated any of those effects. Invertebrate survival and AH sporulation rate and taxon richness were strongly reduced by most combinations of fungicide exposure modes; however, invertebrates were not affected by the low waterborne concentration, whereas AHs suffered the highest reduction at this concentration. Total decomposition was slowed down by both exposure modes, and microbial decomposition was reduced by litter pre-treatment, while the waterborne fungicide had different effects depending on plant species. In general, with the exception of microbial decomposition, responses varied little among litter types. Moreover, and contrary to our expectation, plant diversity did not modulate the fungicide effects. Our results highlight the severity of fungicide inputs to streams through effects on invertebrate and microbial communities and ecosystem functioning, even in streams with well-preserved, diverse riparian vegetation.


Subject(s)
Fungicides, Industrial , Mitosporic Fungi , Animals , Ecosystem , Insecta , Plant Leaves , Rivers
8.
Environ Pollut ; 259: 113898, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31927275

ABSTRACT

Microplastics (MPs) are contaminants of increasing concern due to their abundance, ubiquity and persistence over time. However, knowledge about MP distribution in fresh waters and their effects on freshwater organisms is still scarce, and there is virtually no information about their potential influence on ecosystem functioning. We used a microcosm experiment to examine the effects of MPs (fluorescent, 10-µm polystyrene microspheres) at different concentrations (from 0 to 103 particles mL-1) on leaf litter decomposition (a key process in stream ecosystems) and associated organisms (the caddisfly detritivore Sericostoma pyrenaicum), and the extent to which MPs were attached to leaf litter and ingested and egested by detritivores, thus assessing mechanisms of MP trophic transfer. We found that MPs caused detritivore mortality (which increased 9-fold at the highest concentration) but did not affect their growth. Analysis of fluorescence in samples suggested that MPs were rapidly ingested (most likely through ingestion of particles attached to leaf litter) and egested. Leaf litter decomposition was reduced as a result of increasing MP concentrations; the relationship was significant only in the presence of detritivores, but microbially-mediated decomposition showed a similar trend. Our findings provide novel evidence of harmful effects of MPs on aquatic insects and stream ecosystem functioning, and highlight the need for the standardization of methods in future experiments with MPs in order to allow comparisons and generalizations.


Subject(s)
Ecosystem , Insecta , Microplastics , Rivers , Animals , Insecta/drug effects , Microplastics/toxicity , Plant Leaves/chemistry
9.
Chemosphere ; 244: 125500, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31809926

ABSTRACT

Microplastics (MPs) are contaminants of increasing concern; they are abundant, ubiquitous and persistent over time, representing potential risks for organisms and ecosystems. However, such risks are still virtually unknown for amphibians, despite the particular attention that these organisms often receive because of their global decline. We examined the effects of MPs (fluorescent, 10-µm polystyrene microspheres) at different concentrations (from 0 to 103 particles mL-1) on tadpoles of the common midwife toad, Alytes obstetricans, using a microcosm experiment. We assessed MP effects on tadpole feeding, growth and body condition, as well as their ingestion and egestion of MPs (estimated through fluorescence). Additionally, we explored whether MPs became attached to periphyton (the main food source for these tadpoles, thus potentially representing a major way of MP ingestion), and the effect of MPs on periphyton growth (which may translate into altered freshwater ecosystem functioning). Our results showed significant effects on all the examined variables, and caused tadpole mortality at the highest concentration; also, fluorescence indicated the presence of MPs in tadpoles, tadpole faeces and periphyton. This suggests that MPs can be an important source of stress for amphibians in addition to other pollutants, climate change, habitat loss or chytrid infections, and that amphibians can be a major transfer path for MPs from freshwater to terrestrial ecosystems.


Subject(s)
Anura/physiology , Ecosystem , Larva/drug effects , Microplastics/toxicity , Animals , Fresh Water/chemistry , Larva/growth & development , Periphyton/drug effects , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
10.
Ecology ; 100(12): e02847, 2019 12.
Article in English | MEDLINE | ID: mdl-31351003

ABSTRACT

Biodiversity loss is occurring globally at unprecedented rates, altering the functioning of the Earth's ecosystems. Multiple processes are often key components of ecosystem functioning, but it is unclear how biodiversity loss affects ecosystem multifunctionality (i.e., the ability of ecosystems to maintain multiple processes simultaneously). This is particularly true for some ecosystem types such as streams, which have been understudied, despite their key role in global biogeochemical cycles and their serious impairment by the widespread loss of riparian vegetation as a result of global change. Using a microcosm experiment, we tested whether losing riparian plant diversity affected stream multifunctionality, taking into account nine key processes related to litter decomposition, animal biomass production, and nutrient cycling, and simulating plant species loss from four to one in the presence or absence of litter-feeding detritivores. Multifunctionality increased with plant diversity in the presence of detritivores and decreased in their absence, evidencing a key role of detritivores in biodiversity-ecosystem-functioning (BEF) relationships. Moreover, by exploring effects of plant diversity on each process individually we were able to reveal potential mechanisms underlying BEF relationships; for example, effects of plant diversity on nutrient cycling occurred at least partly via indirect nutrient transfer, and were possibly accompanied by changes in microbial stoichiometry. Such mechanisms were unnoticeable when examining multifunctionality metrics, suggesting that individual processes provide crucial information to understand how stream ecosystem functioning is impaired by biodiversity loss.


Subject(s)
Ecosystem , Rivers , Animals , Biodiversity , Plant Leaves , Plants
11.
PLoS One ; 13(5): e0198243, 2018.
Article in English | MEDLINE | ID: mdl-29813129

ABSTRACT

Biodiversity loss in riparian forests has the potential to alter rates of leaf litter decomposition in stream ecosystems. However, studies have reported the full range of positive, negative and no effects of plant diversity loss on decomposition, and there is currently no explanation for such inconsistent results. Furthermore, it is uncertain whether plant diversity loss affects other ecological processes related to decomposition, such as fine particulate organic matter production or detritivore growth, which precludes a thorough understanding of how detrital stream food webs are impacted by plant diversity loss. We used a microcosm experiment to examine the effects of plant diversity loss on litter decomposition, fine particulate organic matter production, and growth of a dominant leaf-shredding detritivore, using litter mixtures varying in species composition. We hypothesized that plant diversity loss would decrease the rates of all studied processes, but such effects would depend on the leaf traits present in litter mixtures (both their average values and their variability). Our findings partly supported our hypotheses, showing that plant diversity loss had a consistently negative effect on litter decomposition and fine particulate organic matter production (but not on detritivore growth) across litter mixtures, which was mediated by detritivores. Importantly, the magnitude of the diversity effect and the relative importance of different mechanisms underlying this effect (i.e., complementarity vs. selection) varied depending on the species composition of litter mixtures, mainly because of differences in litter nutritional quality and trait variability. Complementarity was prevalent but varied in size, with positive selection effects also occurring in some mixtures. Our results support the notion that loss of riparian plant species is detrimental to key stream ecosystem processes that drive detrital food webs, but that the magnitude of such effects largely depends on the the order of species loss.


Subject(s)
Biodiversity , Organic Chemicals/chemistry , Organic Chemicals/metabolism , Plant Leaves/metabolism , Rivers/chemistry
12.
Sci Total Environ ; 599-600: 1241-1250, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28521387

ABSTRACT

Climate change and anthropogenic disturbances are expected to lead to more intense and frequent droughts, with potentially severe effects on structure and function of perennial temperate streams. However, more information is required on whether streams flowing through basins already affected by exotic plantations will respond to droughts in the same way as streams under native forests. The recolonisation dynamics of benthic macroinvertebrate communities and leaf litter decomposition rates were examined in nine streams of oceanic-temperate climate that differed in catchment vegetation (three streams draining native deciduous forest, three in pine plantations and three in eucalypt plantations) after a marked drought. In each stream, five benthic samples were collected three times (ca. 1.5months between sampling dates) after flow recovery, and the taxonomic and functional trait compositions of the macroinvertebrate communities were analysed. The decomposition rate of Alnus glutinosa was measured in fine- and coarse-mesh litter bags. Benthic macroinvertebrate density, richness and diversity increased with time after flow recovery but only richness and diversity differed among stream types, with eucalypt streams showing the lowest values. Both the taxonomic and functional compositions of the macroinvertebrate community were dependent on vegetation type and time, with the differences among stream types diminishing over time. While leaf-litter decomposition rate did not depend on catchment vegetation after drought, detritivore activity was the lowest under eucalypt streams and it was positively correlated to benthic shredder density. Our results indicated that in these perennial temperate streams the catchment vegetation influenced the recovery of benthic macroinvertebrate communities after a period of drought, although the decomposition rate of leaf litter was not strongly affected. Greater understanding of the structural and functional responses of stream ecosystems to different stressors is required before the effects of expected more intense and frequent hydrological changes caused by climate change can be adequately forecast.

SELECTION OF CITATIONS
SEARCH DETAIL
...