Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Mol Syst Biol ; 19(4): e11127, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36856068

ABSTRACT

Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαßγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.


Subject(s)
Eukaryotic Cells , Proteomics , Signal Transduction , GTP Phosphohydrolases
2.
Elife ; 102021 08 19.
Article in English | MEDLINE | ID: mdl-34409938

ABSTRACT

For a sperm to successfully fertilize an egg, it must first undergo capacitation in the female reproductive tract and later undergo acrosomal reaction (AR) upon encountering an egg surrounded by its vestment. How premature AR is avoided despite rapid surges in signaling cascades during capacitation remains unknown. Using a combination of conditional knockout (cKO) mice and cell-penetrating peptides, we show that GIV (CCDC88A), a guanine nucleotide-exchange modulator (GEM) for trimeric GTPases, is highly expressed in spermatocytes and is required for male fertility. GIV is rapidly phosphoregulated on key tyrosine and serine residues in human and murine spermatozoa. These phosphomodifications enable GIV-GEM to orchestrate two distinct compartmentalized signaling programs in the sperm tail and head; in the tail, GIV enhances PI3K→Akt signals, sperm motility and survival, whereas in the head it inhibits cAMP surge and premature AR. Furthermore, GIV transcripts are downregulated in the testis and semen of infertile men. These findings exemplify the spatiotemporally segregated signaling programs that support sperm capacitation and shed light on a hitherto unforeseen cause of infertility in men.


Subject(s)
Fertility , Gene Expression Regulation , Microfilament Proteins/genetics , Signal Transduction/genetics , Sperm Capacitation/genetics , Vesicular Transport Proteins/genetics , Animals , Down-Regulation , Female , Fertility/genetics , Humans , Male , Mice , Mice, Knockout , Phosphorylation , Spermatocytes/metabolism , Spermatozoa/metabolism , Testis/cytology , Testis/pathology
3.
Proc Natl Acad Sci U S A ; 117(46): 28763-28774, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139573

ABSTRACT

The molecular mechanisms by which receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major signaling hubs in eukaryotes, independently relay signals across the plasma membrane have been extensively characterized. How these hubs cross-talk has been a long-standing question, but answers remain elusive. Using linear ion-trap mass spectrometry in combination with biochemical, cellular, and computational approaches, we unravel a mechanism of activation of heterotrimeric G proteins by RTKs and chart the key steps that mediate such activation. Upon growth factor stimulation, the guanine-nucleotide exchange modulator dissociates Gαi•ßγ trimers, scaffolds monomeric Gαi with RTKs, and facilitates the phosphorylation on two tyrosines located within the interdomain cleft of Gαi. Phosphorylation triggers the activation of Gαi and inhibits second messengers (cAMP). Tumor-associated mutants reveal how constitutive activation of this pathway impacts cell's decision to "go" vs. "grow." These insights define a tyrosine-based G protein signaling paradigm and reveal its importance in eukaryotes.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Animals , COS Cells , Chlorocebus aethiops , ErbB Receptors/metabolism , HEK293 Cells , HeLa Cells , Heterotrimeric GTP-Binding Proteins/physiology , Humans , Phosphorylation , Receptor Protein-Tyrosine Kinases/physiology , Signal Transduction , Tyrosine/metabolism
4.
iScience ; 23(6): 101209, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32535026

ABSTRACT

Cells perceive and respond to the extracellular matrix via integrin receptors; their dysregulation has been implicated in inflammation and cancer metastasis. Here we show that a guanine nucleotide-exchange modulator of trimeric-GTPase Gαi, GIV (a.k.a Girdin), directly binds the integrin adaptor Kindlin-2. A non-canonical short linear motif within the C terminus of GIV binds Kindlin-2-FERM3 domain at a site that is distinct from the binding site for the canonical NPxY motif on the -integrin tail. Binding of GIV to Kindlin-2 allosterically enhances Kindlin-2's affinity for ß1-integrin. Consequently, integrin activation and clustering are maximized, which augments cell adhesion, spreading, and invasion. Findings elucidate how the GIV•Kindlin-2 complex has a 2-fold impact: it allosterically synergizes integrin activation and enables ß1-integrins to indirectly access and modulate trimeric GTPases via the complex. Furthermore, Cox proportional-hazard models on tumor transcriptomics provide trans-scale evidence of synergistic interactions between GIV•Kindlin-2•ß1-integrin on time to progression to metastasis.

5.
Sci Signal ; 11(519)2018 02 27.
Article in English | MEDLINE | ID: mdl-29487190

ABSTRACT

Cellular proliferation, differentiation, and morphogenesis are shaped by multiple signaling cascades, and their dysregulation plays an integral role in cancer progression. Three cascades that contribute to oncogenic potential are those mediated by Wnt proteins and the receptor Frizzled (FZD), growth factor receptor tyrosine kinases (RTKs), and heterotrimeric G proteins and associated GPCRs. Daple is a guanine nucleotide exchange factor (GEF) for the G protein Gαi Daple also binds to FZD and the Wnt/FZD mediator Dishevelled (Dvl), and it enhances ß-catenin-independent Wnt signaling in response to Wnt5a-FZD7 signaling. We identified Daple as a substrate of multiple RTKs and non-RTKs and, hence, as a point of convergence for the three cascades. We found that phosphorylation near the Dvl-binding motif in Daple by both RTKs and non-RTKs caused Daple/Dvl complex dissociation and augmented the ability of Daple to bind to and activate Gαi, which potentiated ß-catenin-independent Wnt signals and stimulated epithelial-mesenchymal transition (EMT) similarly to Wnt5a/FZD7 signaling. Although Daple acts as a tumor suppressor in the healthy colon, the concurrent increased abundance of Daple and epidermal growth factor receptor (EGFR) in colorectal tumors was associated with poor patient prognosis. Thus, the Daple-dependent activation of Gαi and the Daple-dependent enhancement of ß-catenin-independent Wnt signals are not only stimulated by Wnt5a/FZD7 to suppress tumorigenesis but also hijacked by growth factor-activated RTKs to enhance tumor progression. These findings identify a cross-talk paradigm among growth factor RTKs, heterotrimeric G proteins, and the Wnt/FZD pathway in cancer.


Subject(s)
Guanine Nucleotide Exchange Factors/genetics , Heterotrimeric GTP-Binding Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Wnt Proteins/genetics , Wnt Signaling Pathway/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Dishevelled Proteins/genetics , Dishevelled Proteins/metabolism , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Kaplan-Meier Estimate , Phosphorylation , Protein Binding , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Proteins/metabolism
6.
Mol Neurobiol ; 54(8): 6213-6224, 2017 10.
Article in English | MEDLINE | ID: mdl-27709494

ABSTRACT

Wnt proteins preferentially activate either ß-catenin-dependent or ß-catenin-independent signals, but the activity of a particular Wnt also depends on cellular context and receptor availability. We previously reported that Wnt-3a induces neural differentiation of human embryonic stem cell-derived neural stem cells (NSCs) in a ß-catenin-independent manner by activating a signal involving JNK and the AP-1 family member ATF-2. Here, we report the results of a gene silencing approach to identify the Wnt receptors that mediate this response to Wnt-3a. Silencing of ROR2 increased neuronal differentiation, as measured by expression of the genes DCX, NEUROD1, and NGN1, suggesting ROR2 signals normally prevent differentiation. Silencing of the other Wnt receptors singly did not affect Wnt-3a-induced neuronal differentiation. However, pairwise silencing of ROR1 and FZD4 or FZD5 and of LRP6 and FZD4 or FZD5 inhibited neuronal differentiation, as detected by reductions in the expression of neuronal genes and immunocytochemical detection of DCX, NEUROD1 and DCX. Ectopic expression of these receptors in HEK 293 cells increased ATF2-dependent transcription. In addition, ROR1 coimmunoprecipitated with FZD4 and LRP6 in transfected HEK 293 cells and colocalized with FZD4 and with LRP6 at the cell surface of transfected L cells. Wnt-3a did not appear to affect these interactions but did alter the interactions between LRP6 and FZD4/5. Together, these observations highlight roles for ROR1, LRP6, FZD4, and FZD5 in neural stem cell differentiation and provide support for a model in which dynamic interactions among these receptors mediate Wnt-3a activation of ATF2 signaling.


Subject(s)
Neural Stem Cells/metabolism , Neurogenesis/physiology , Neurons/metabolism , Receptors, Wnt/metabolism , Wnt3A Protein/pharmacology , Humans , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurons/cytology , Neurons/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology
7.
Curr Protoc Chem Biol ; 8(4): 265-298, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27925669

ABSTRACT

Canonical signal transduction via heterotrimeric G proteins is spatiotemporally restricted, i.e., triggered exclusively at the plasma membrane, only by agonist activation of G protein-coupled receptors via a finite process that is terminated within a few hundred milliseconds. Recently, a rapidly emerging paradigm has revealed a noncanonical pathway for activation of heterotrimeric G proteins via the nonreceptor guanidine-nucleotide exchange factor, GIV/Girdin. Biochemical, biophysical, and functional studies evaluating this pathway have unraveled its unique properties and distinctive spatiotemporal features. As in the case of any new pathway/paradigm, these studies first required an in-depth optimization of tools/techniques and protocols, governed by rationale and fundamentals unique to the pathway, and more specifically to the large multimodular GIV protein. Here we provide the most up-to-date overview of protocols that have generated most of what we know today about noncanonical G protein activation by GIV and its relevance in health and disease. © 2016 by John Wiley & Sons, Inc.


Subject(s)
Fluorescent Antibody Technique/methods , Guanine Nucleotide Exchange Factors/analysis , Immunoblotting/methods , Immunoprecipitation/methods , Animals , Biophysics/methods , Guanine Nucleotide Exchange Factors/metabolism , Humans , Signal Transduction
8.
Proc Natl Acad Sci U S A ; 113(39): E5721-30, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27621449

ABSTRACT

We previously showed that guanine nucleotide-binding (G) protein α subunit (Gα)-interacting vesicle-associated protein (GIV), a guanine-nucleotide exchange factor (GEF), transactivates Gα activity-inhibiting polypeptide 1 (Gαi) proteins in response to growth factors, such as EGF, using a short C-terminal motif. Subsequent work demonstrated that GIV also binds Gαs and that inactive Gαs promotes maturation of endosomes and shuts down mitogenic MAPK-ERK1/2 signals from endosomes. However, the mechanism and consequences of dual coupling of GIV to two G proteins, Gαi and Gαs, remained unknown. Here we report that GIV is a bifunctional modulator of G proteins; it serves as a guanine nucleotide dissociation inhibitor (GDI) for Gαs using the same motif that allows it to serve as a GEF for Gαi. Upon EGF stimulation, GIV modulates Gαi and Gαs sequentially: first, a key phosphomodification favors the assembly of GIV-Gαi complexes and activates GIV's GEF function; then a second phosphomodification terminates GIV's GEF function, triggers the assembly of GIV-Gαs complexes, and activates GIV's GDI function. By comparing WT and GIV mutants, we demonstrate that GIV inhibits Gαs activity in cells responding to EGF. Consequently, the cAMP→PKA→cAMP response element-binding protein signaling axis is inhibited, the transit time of EGF receptor through early endosomes are accelerated, mitogenic MAPK-ERK1/2 signals are rapidly terminated, and proliferation is suppressed. These insights define a paradigm in G-protein signaling in which a pleiotropically acting modulator uses the same motif both to activate and to inhibit G proteins. Our findings also illuminate how such modulation of two opposing Gα proteins integrates downstream signals and cellular responses.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Microfilament Proteins/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Cell Proliferation/drug effects , Chemotaxis/drug effects , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclin-Dependent Kinase 5/metabolism , Down-Regulation/drug effects , Endosomes/drug effects , Endosomes/metabolism , Epidermal Growth Factor/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Fluorescence Resonance Energy Transfer , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Guanosine Triphosphate/metabolism , HeLa Cells , Humans , Microfilament Proteins/chemistry , Mutant Proteins/metabolism , Phosphorylation/drug effects , Protein Binding , Protein Kinase C-theta/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , Vesicular Transport Proteins/chemistry
9.
Sci Rep ; 6: 28532, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27334688

ABSTRACT

Sox2 is a pluripotency transcription factor that as an oncogene can also regulate cell proliferation. Therefore, genes implicated in several different aspects of cell proliferation, such as the VRK1 chromatin-kinase, are candidates to be targets of Sox2. Sox 2 and VRK1 colocalize in nuclei of proliferating cells forming a stable complex. Sox2 knockdown abrogates VRK1 gene expression. Depletion of either Sox2 or VRK1 caused a reduction of cell proliferation. Sox2 up-regulates VRK1 expression and both proteins cooperate in the activation of CCND1. The accumulation of VRK1 protein downregulates SOX2 expression and both proteins are lost in terminally differentiated cells. Induction of neural differentiation with retinoic acid resulted in downregulation of Sox2 and VRK1 that inversely correlated with the expression of differentiation markers such as N-cadherin, Pax6, mH2A1.2 and mH2A2. Differentiation-associated macro histones mH2A1.2and mH2A2 inhibit CCND1 and VRK1 expression and also block the activation of the VRK1 promoter by Sox2. VRK1 is a downstream target of Sox2 and both form an autoregulatory loop in epithelial cell differentiation.


Subject(s)
Cell Cycle/genetics , Cell Differentiation/genetics , Intracellular Signaling Peptides and Proteins/genetics , Oncogenes/genetics , Protein Serine-Threonine Kinases/genetics , SOXB1 Transcription Factors/genetics , Biomarkers/metabolism , Cadherins/genetics , Carcinogenesis/genetics , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin D1/genetics , Down-Regulation/genetics , Epithelium/metabolism , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , PAX6 Transcription Factor/genetics , Promoter Regions, Genetic/genetics , Up-Regulation/genetics
10.
Biochem Biophys Res Commun ; 468(1-2): 287-93, 2015.
Article in English | MEDLINE | ID: mdl-26514725

ABSTRACT

Insulin resistance (IR) is a metabolic disorder characterized by impaired glucose uptake in response to insulin. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the chief conduit for post-receptor signaling. We recently demonstrated that GIV, a Guanidine Exchange Factor (GEF) for the trimeric G protein, Gαi, is a major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind the InsR, IRS1 and PI3K, GIV enhances the InsR-IRS1-Akt-AS160 (RabGAP) signaling cascade and cellular glucose uptake via its GEF function. Phosphoinhibition of GIV-GEF by the fatty-acid/PKCθ pathway inhibits the cascade and impairs glucose uptake. Here we show that GIV directly and constitutively binds the exocyst complex subunit Exo-70 and also associates with GLUT4-storage vesicles (GSVs) exclusively upon insulin stimulation. Without GIV or its GEF function, membrane association of Exo-70 as well as exocytosis of GSVs in response to insulin are impaired. Thus, GIV is an essential component within the insulin signaling cascade that couples upstream signal transducers within the InsR and G-Protein signaling cascade to downstream vesicular trafficking events within the exocytic pathway. These findings suggest a role of GIV in coordinating key signaling and trafficking events of metabolic insulin response.


Subject(s)
Glucose Transporter Type 4/metabolism , Microfilament Proteins/metabolism , Vesicular Transport Proteins/metabolism , Animals , Cell Line , Exocytosis , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells , Humans , Insulin/metabolism , Protein Binding , Protein Transport , Rats , Signal Transduction
11.
Mol Biol Cell ; 26(24): 4313-24, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26446841

ABSTRACT

GIV/Girdin is a multimodular signal transducer and a bona fide metastasis-related protein. As a guanidine exchange factor (GEF), GIV modulates signals initiated by growth factors (chemical signals) by activating the G protein Gαi. Here we report that mechanical signals triggered by the extracellular matrix (ECM) also converge on GIV-GEF via ß1 integrins and that focal adhesions (FAs) serve as the major hubs for mechanochemical signaling via GIV. GIV interacts with focal adhesion kinase (FAK) and ligand-activated ß1 integrins. Phosphorylation of GIV by FAK enhances PI3K-Akt signaling, the integrity of FAs, increases cell-ECM adhesion, and triggers ECM-induced cell motility. Activation of Gαi by GIV-GEF further potentiates FAK-GIV-PI3K-Akt signaling at the FAs. Spatially restricted signaling via tyrosine phosphorylated GIV at the FAs is enhanced during cancer metastasis. Thus GIV-GEF serves as a unifying platform for integration and amplification of adhesion (mechanical) and growth factor (chemical) signals during cancer progression.


Subject(s)
Focal Adhesions/metabolism , GTP-Binding Proteins/metabolism , Microfilament Proteins/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Sequence , Animals , COS Cells , Cell Line, Tumor , Cell Movement/physiology , Focal Adhesion Kinase 1/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Binding , Signal Transduction , Tyrosine/metabolism
12.
Mol Biol Cell ; 26(23): 4209-23, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26378251

ABSTRACT

Insulin resistance (IR) is a metabolic disorder characterized by impaired insulin signaling and cellular glucose uptake. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the sole conduit for postreceptor signaling. Here we challenge that paradigm and show that GIV/Girdin, a guanidine exchange factor (GEF) for the trimeric G protein Gαi, is another major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind InsR, IRS1, and phosphoinositide 3-kinase, GIV serves as a key hub in the immediate postreceptor level, which coordinately enhances the metabolic insulin response and glucose uptake in myotubes via its GEF function. Site-directed mutagenesis or phosphoinhibition of GIV-GEF by the fatty acid/protein kinase C-theta pathway triggers IR. Insulin sensitizers reverse phosphoinhibition of GIV and reinstate insulin sensitivity. We also provide evidence for such reversible regulation of GIV-GEF in skeletal muscles from patients with IR. Thus GIV is an essential upstream component that couples InsR to G-protein signaling to enhance the metabolic insulin response, and impairment of such coupling triggers IR. We also provide evidence that GIV-GEF serves as therapeutic target for exogenous manipulation of physiological insulin response and reversal of IR in skeletal muscles.


Subject(s)
GTP-Binding Protein Regulators/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Insulin Resistance/physiology , Microfilament Proteins/metabolism , Vesicular Transport Proteins/metabolism , Cells, Cultured , Fatty Acids/metabolism , Female , Humans , Insulin/metabolism , Insulin Receptor Substrate Proteins/metabolism , Muscle, Skeletal/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Receptor, Insulin/metabolism , Signal Transduction
13.
Proc Natl Acad Sci U S A ; 112(35): E4874-83, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26286990

ABSTRACT

Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development.


Subject(s)
Cell Movement , Cell Proliferation , Cyclin-Dependent Kinase 5/metabolism , Microfilament Proteins/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Sequence , Animals , ErbB Receptors/metabolism , Humans , Microfilament Proteins/chemistry , Molecular Sequence Data , Morphogenesis , Phosphorylation , Protein Transport , Sequence Homology, Amino Acid , Signal Transduction , Vesicular Transport Proteins/chemistry , Wound Healing
14.
Elife ; 4: e07091, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26126266

ABSTRACT

Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the ß-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis.


Subject(s)
Frizzled Receptors/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/metabolism , Wnt Signaling Pathway , Humans
15.
Proc Natl Acad Sci U S A ; 112(20): E2602-10, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25926659

ABSTRACT

In eukaryotes, receptor tyrosine kinases (RTKs) and trimeric G proteins are two major signaling hubs. Signal transduction via trimeric G proteins has long been believed to be triggered exclusively by G protein-coupled receptors (GPCRs). This paradigm has recently been challenged by several studies on a multimodular signal transducer, Gα-Interacting Vesicle associated protein (GIV/Girdin). We recently demonstrated that GIV's C terminus (CT) serves as a platform for dynamic association of ligand-activated RTKs with Gαi, and for noncanonical transactivation of G proteins. However, exogenous manipulation of this platform has remained beyond reach. Here we developed cell-permeable GIV-CT peptides by fusing a TAT-peptide transduction domain (TAT-PTD) to the minimal modular elements of GIV that are necessary and sufficient for activation of Gi downstream of RTKs, and used them to engineer signaling networks and alter cell behavior. In the presence of an intact GEF motif, TAT-GIV-CT peptides enhanced diverse processes in which GIV's GEF function has previously been implicated, e.g., 2D cell migration after scratch-wounding, invasion of cancer cells, and finally, myofibroblast activation and collagen production. Furthermore, topical application of TAT-GIV-CT peptides enhanced the complex, multireceptor-driven process of wound repair in mice in a GEF-dependent manner. Thus, TAT-GIV peptides provide a novel and versatile tool to manipulate Gαi activation downstream of growth factors in a diverse array of pathophysiologic conditions.


Subject(s)
Cell-Penetrating Peptides/metabolism , GTP-Binding Proteins/metabolism , Gene Products, tat/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/metabolism , Models, Molecular , Signal Transduction/physiology , Vesicular Transport Proteins/metabolism , Animals , Cell-Penetrating Peptides/therapeutic use , Fluorescence Resonance Energy Transfer , Gene Products, tat/chemistry , Gene Products, tat/genetics , Genetic Engineering/methods , HeLa Cells , Humans , Mice , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Polymerase Chain Reaction , Transduction, Genetic/methods , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics
16.
Dev Cell ; 33(2): 189-203, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25865347

ABSTRACT

A long-held tenet of heterotrimeric G protein signal transduction is that it is triggered by G protein-coupled receptors (GPCRs) at the PM. Here, we demonstrate that Gi is activated in the Golgi by GIV/Girdin, a non-receptor guanine-nucleotide exchange factor (GEF). GIV-dependent activation of Gi at the Golgi maintains the finiteness of the cyclical activation of ADP-ribosylation factor 1 (Arf1), a fundamental step in vesicle traffic in all eukaryotes. Several interactions with other major components of Golgi trafficking-e.g., active Arf1, its regulator, ArfGAP2/3, and the adaptor protein ß-COP-enable GIV to coordinately regulate Arf1 signaling. When the GIV-Gαi pathway is selectively inhibited, levels of GTP-bound Arf1 are elevated and protein transport along the secretory pathway is delayed. These findings define a paradigm in non-canonical G protein signaling at the Golgi, which places GIV-GEF at the crossroads between signals gated by the trimeric G proteins and the Arf family of monomeric GTPases.


Subject(s)
ADP-Ribosylation Factor 1/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Golgi Apparatus/metabolism , Microfilament Proteins/genetics , Transport Vesicles/metabolism , Vesicular Transport Proteins/genetics , ADP-Ribosylation Factors/metabolism , Animals , Binding Sites/genetics , COS Cells , Cell Line , Cell Membrane/metabolism , Chlorocebus aethiops , Coatomer Protein/metabolism , Enzyme Activation , GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors , GTPase-Activating Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Microfilament Proteins/antagonists & inhibitors , Protein Binding , Protein Structure, Tertiary , Protein Transport/physiology , RNA Interference , RNA, Small Interfering , Signal Transduction , Vesicular Transport Proteins/antagonists & inhibitors
17.
Mol Biol Cell ; 25(22): 3654-71, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25187647

ABSTRACT

A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein-protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein-protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV-Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs.


Subject(s)
ErbB Receptors/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Microfilament Proteins/chemistry , Vesicular Transport Proteins/chemistry , Amino Acid Sequence , Animals , Cell Movement , ErbB Receptors/genetics , ErbB Receptors/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Gene Expression Regulation , HeLa Cells , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Folding , Protein Interaction Domains and Motifs , Signal Transduction , Structural Homology, Protein , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
18.
Nat Commun ; 5: 4451, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25043713

ABSTRACT

Progressive liver fibrosis is characterized by the deposition of collagen by activated hepatic stellate cells (HSCs). Activation of HSCs is a multiple receptor-driven process in which profibrotic signals are enhanced and antifibrotic pathways are suppressed. Here we report the discovery of a signalling platform comprising G protein subunit, Gαi and GIV, its guanine exchange factor (GEF), which serves as a central hub within the fibrogenic signalling network initiated by diverse classes of receptors. GIV is expressed in the liver after fibrogenic injury and is required for HSC activation. Once expressed, GIV enhances the profibrotic (PI3K-Akt-FoxO1 and TGFß-SMAD) and inhibits the antifibrotic (cAMP-PKA-pCREB) pathways to skew the signalling network in favour of fibrosis, all via activation of Gαi. We also provide evidence that GIV may serve as a biomarker for progression of fibrosis after liver injury and a therapeutic target for arresting and/or reversing HSC activation during liver fibrosis.


Subject(s)
Hepatic Stellate Cells/metabolism , Liver Cirrhosis/metabolism , Microfilament Proteins/metabolism , Vesicular Transport Proteins/metabolism , Animals , Cell Line , Collagen/biosynthesis , Guanine Nucleotide Exchange Factors/metabolism , Humans , Liver Cirrhosis/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Up-Regulation , Vesicular Transport Proteins/genetics
19.
FEBS Lett ; 588(5): 692-700, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24492002

ABSTRACT

DNA damage immediate cellular response requires the activation of p53 by kinases. We found that p53 forms a basal stable complex with VRK1, a Ser-Thr kinase that responds to UV-induced DNA damage by specifically phosphorylating p53. This interaction takes place through the p53 DNA binding domain, and frequent DNA-contact mutants of p53, such as R273H, R248H or R280K, do not disrupt the complex. UV-induced DNA damage activates VRK1, and is accompanied by phosphorylation of p53 at Thr-18 before it accumulates. We propose that the VRK1-p53 basal complex is an early-warning system for immediate cellular responses to DNA damage.


Subject(s)
DNA Damage , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , DNA Repair , HEK293 Cells , Humans , Mutation, Missense , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Maps , Protein Multimerization , Protein Processing, Post-Translational , Protein Stability , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Ultraviolet Rays
20.
Proc Natl Acad Sci U S A ; 110(14): 5510-5, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23509302

ABSTRACT

Gα-interacting, vesicle-associated protein (GIV/Girdin) is a multidomain signal transducer that enhances PI3K-Akt signals downstream of both G-protein-coupled receptors and growth factor receptor tyrosine kinases during diverse biological processes and cancer metastasis. Mechanistically, GIV serves as a non-receptor guanine nucleotide exchange factor (GEF) that enhances PI3K signals by activating trimeric G proteins, Gαi1/2/3. Site-directed mutations in GIV's GEF motif disrupt its ability to bind or activate Gi and abrogate PI3K-Akt signals; however, nothing is known about how GIV's GEF function is regulated. Here we report that PKCθ, a novel protein kinase C, down-regulates GIV's GEF function by phosphorylating Ser(S)1689 located within GIV's GEF motif. We demonstrate that PKCθ specifically binds and phosphorylates GIV at S1689, and this phosphoevent abolishes GIV's ability to bind and activate Gαi. HeLa cells stably expressing the phosphomimetic mutant of GIV, GIV-S1689→D, are phenotypically identical to those expressing the GEF-deficient F1685A mutant: Actin stress fibers are decreased and cell migration is inhibited whereas cell proliferation is triggered, and Akt (a.k.a. protein kinase B, PKB) activation is impaired downstream of both the lysophosphatidic acid receptor, a G-protein-coupled receptor, and the insulin receptor, a receptor tyrosine kinase. These findings indicate that phosphorylation of GIV by PKCθ inhibits GIV's GEF function and generates a unique negative feedback loop for downregulating the GIV-Gi axis of prometastatic signaling downstream of multiple ligand-activated receptors. This phosphoevent constitutes the only regulatory pathway described for terminating signaling by any of the growing family of nonreceptor GEFs that modulate G-protein activity.


Subject(s)
Isoenzymes/metabolism , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Models, Molecular , Protein Kinase C/metabolism , Signal Transduction/genetics , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/metabolism , Actins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , HeLa Cells , Humans , Immunoblotting , Immunoprecipitation , Microfilament Proteins/genetics , Mutation, Missense/genetics , Phosphorylation , Protein Kinase C-theta , Vesicular Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...