Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(48): eadh2726, 2023 12.
Article in English | MEDLINE | ID: mdl-38019906

ABSTRACT

Copy number variations at 7q11.23 cause neurodevelopmental disorders with shared and opposite manifestations. Deletion causes Williams-Beuren syndrome featuring hypersociability, while duplication causes 7q11.23 microduplication syndrome (7Dup), frequently exhibiting autism spectrum disorder (ASD). Converging evidence indicates GTF2I as key mediator of the cognitive-behavioral phenotypes, yet its role in cortical development and behavioral hallmarks remains largely unknown. We integrated proteomic and transcriptomic profiling of patient-derived cortical organoids, including longitudinally at single-cell resolution, to dissect 7q11.23 dosage-dependent and GTF2I-specific disease mechanisms. We observed dosage-dependent impaired dynamics of neural progenitor proliferation, transcriptional imbalances, and highly specific alterations in neuronal output, leading to precocious excitatory neuron production in 7Dup, which was rescued by restoring physiological GTF2I levels. Transgenic mice with Gtf2i duplication recapitulated progenitor proliferation and neuronal differentiation defects alongside ASD-like behaviors. Consistently, inhibition of lysine demethylase 1 (LSD1), a GTF2I effector, was sufficient to rescue ASD-like phenotypes in transgenic mice, establishing GTF2I-LSD1 axis as a molecular pathway amenable to therapeutic intervention in ASD.


Subject(s)
Autism Spectrum Disorder , Transcription Factors, TFIII , Transcription Factors, TFII , Mice , Animals , Humans , Autism Spectrum Disorder/genetics , DNA Copy Number Variations , Proteomics , Social Behavior , Phenotype , Mice, Transgenic , Cell Differentiation/genetics , Histone Demethylases/genetics , Transcription Factors, TFIII/genetics , Transcription Factors, TFII/genetics
2.
Transl Psychiatry ; 12(1): 520, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539399

ABSTRACT

Brain organoids are becoming increasingly relevant to dissect the molecular mechanisms underlying psychiatric and neurological conditions. The in vitro recapitulation of key features of human brain development affords the unique opportunity of investigating the developmental antecedents of neuropsychiatric conditions in the context of the actual patients' genetic backgrounds. Specifically, multiple strategies of brain organoid (BO) differentiation have enabled the investigation of human cerebral corticogenesis in vitro with increasing accuracy. However, the field lacks a systematic investigation of how closely the gene co-expression patterns seen in cultured BO from different protocols match those observed in fetal cortex, a paramount information for ensuring the sensitivity and accuracy of modeling disease trajectories. Here we benchmark BO against fetal corticogenesis by integrating transcriptomes from in-house differentiated cortical BO (CBO), other BO systems, human fetal brain samples processed in-house, and prenatal cortices from the BrainSpan Atlas. We identified co-expression patterns and prioritized hubs of human corticogenesis and CBO differentiation, highlighting both well-preserved and discordant trends across BO protocols. We evaluated the relevance of identified gene modules for neurodevelopmental disorders and psychiatric conditions finding significant enrichment of disease risk genes especially in modules related to neuronal maturation and synapsis development. The longitudinal transcriptomic analysis of CBO revealed a two-step differentiation composed of a fast-evolving phase, corresponding to the appearance of the main cell populations of the cortex, followed by a slow-evolving one characterized by milder transcriptional changes. Finally, we observed heterochronicity of differentiation across BO models compared to fetal cortex. Our approach provides a framework to directly compare the extent of in vivo/in vitro alignment of neurodevelopmentally relevant processes and their attending temporalities, structured as a resource to query for modeling human corticogenesis and the neuropsychiatric outcomes of its alterations.


Subject(s)
Benchmarking , Cerebral Cortex , Humans , Brain , Neurogenesis , Organoids
3.
Cell Rep ; 39(1): 110615, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385734

ABSTRACT

Mutations in the chromodomain helicase DNA-binding 8 (CHD8) gene are a frequent cause of autism spectrum disorder (ASD). While its phenotypic spectrum often encompasses macrocephaly, implicating cortical abnormalities, how CHD8 haploinsufficiency affects neurodevelopmental is unclear. Here, employing human cerebral organoids, we find that CHD8 haploinsufficiency disrupted neurodevelopmental trajectories with an accelerated and delayed generation of, respectively, inhibitory and excitatory neurons that yields, at days 60 and 120, symmetrically opposite expansions in their proportions. This imbalance is consistent with an enlargement of cerebral organoids as an in vitro correlate of patients' macrocephaly. Through an isogenic design of patient-specific mutations and mosaic organoids, we define genotype-phenotype relationships and uncover their cell-autonomous nature. Our results define cell-type-specific CHD8-dependent molecular defects related to an abnormal program of proliferation and alternative splicing. By identifying cell-type-specific effects of CHD8 mutations, our study uncovers reproducible developmental alterations that may be employed for neurodevelopmental disease modeling.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Megalencephaly , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Haploinsufficiency/genetics , Humans , Megalencephaly/genetics , Transcription Factors/genetics
4.
Cell Death Differ ; 29(3): 614-626, 2022 03.
Article in English | MEDLINE | ID: mdl-34845371

ABSTRACT

High Grade Serous Ovarian cancer (HGSOC) is a major unmet need in oncology, due to its precocious dissemination and the lack of meaningful human models for the investigation of disease pathogenesis in a patient-specific manner. To overcome this roadblock, we present a new method to isolate and grow single cells directly from patients' metastatic ascites, establishing the conditions for propagating them as 3D cultures that we refer to as single cell-derived metastatic ovarian cancer spheroids (sMOCS). By single cell RNA sequencing (scRNAseq) we define the cellular composition of metastatic ascites and trace its propagation in 2D and 3D culture paradigms, finding that sMOCS retain and amplify key subpopulations from the original patients' samples and recapitulate features of the original metastasis that do not emerge from classical 2D culture, including retention of individual patients' specificities. By enabling the enrichment of uniquely informative cell subpopulations from HGSOC metastasis and the clonal interrogation of their diversity at the functional and molecular level, this method provides a powerful instrument for precision oncology in ovarian cancer.


Subject(s)
Ascites , Ovarian Neoplasms , Ascites/genetics , Ascites/pathology , Cell Line, Tumor , Female , Humans , Ovarian Neoplasms/pathology , Precision Medicine , Spheroids, Cellular/pathology
5.
Mol Autism ; 11(1): 50, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32546261

ABSTRACT

Sociability entails some of the most complex behaviors processed by the central nervous system. It includes the detection, integration, and interpretation of social cues and elaboration of context-specific responses that are quintessentially species-specific. There is an ever-growing accumulation of molecular associations to autism spectrum disorders (ASD), from causative genes to endophenotypes across multiple functional layers; these however, have rarely been put in context with the opposite manifestation featured in hypersociability syndromes. Genetic copy number variations (CNVs) allow to investigate the relationships between gene dosage and its corresponding phenotypes. In particular, CNVs of the 7q11.23 locus, which manifest diametrically opposite social behaviors, offer a privileged window to look into the molecular substrates underlying the developmental trajectories of the social brain. As by definition sociability is studied in humans postnatally, the developmental fluctuations causing social impairments have thus far remained a black box. Here, we review key evidence of molecular players involved at both ends of the sociability spectrum, focusing on genetic and functional associations of neuroendocrine regulators and synaptic transmission pathways. We then proceed to propose the existence of a molecular axis centered around the paradigmatic dosage imbalances at the 7q11.23 locus, regulating networks responsible for the development of social behavior in humans and highlight the key role that neurodevelopmental models from reprogrammed pluripotent cells will play for its understanding.


Subject(s)
DNA Copy Number Variations/genetics , Social Behavior , Chromosomes, Human/genetics , Gene Dosage , Humans , Neurosecretory Systems/metabolism , Synaptic Transmission/physiology
6.
Stem Cell Reports ; 13(5): 847-861, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31607568

ABSTRACT

The regulation of the proliferation and polarity of neural progenitors is crucial for the development of the brain cortex. Animal studies have implicated glycogen synthase kinase 3 (GSK3) as a pivotal regulator of both proliferation and polarity, yet the functional relevance of its signaling for the unique features of human corticogenesis remains to be elucidated. We harnessed human cortical brain organoids to probe the longitudinal impact of GSK3 inhibition through multiple developmental stages. Chronic GSK3 inhibition increased the proliferation of neural progenitors and caused massive derangement of cortical tissue architecture. Single-cell transcriptome profiling revealed a direct impact on early neurogenesis and uncovered a selective role of GSK3 in the regulation of glutamatergic lineages and outer radial glia output. Our dissection of the GSK3-dependent transcriptional network in human corticogenesis underscores the robustness of the programs determining neuronal identity independent of tissue architecture.


Subject(s)
Cerebral Cortex/cytology , Glycogen Synthase Kinase 3/metabolism , Neurogenesis , Neurons/cytology , Organoids/cytology , Cell Line , Cell Proliferation , Cerebral Cortex/metabolism , Gene Deletion , Glycogen Synthase Kinase 3/genetics , Humans , Neurons/metabolism , Organoids/metabolism , Transcriptome
7.
Sci Rep ; 8(1): 8811, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891904

ABSTRACT

The characteristic six layers of the mammalian neocortex develop sequentially as neurons are generated by neural progenitors and subsequently migrate past older neurons to their final position in the cortical plate. One of the earliest steps of neuronal differentiation is the formation of an axon. Small GTPases play essential roles during this process by regulating cytoskeletal dynamics and intracellular trafficking. While the function of GTPases has been studied extensively in cultured neurons and in vivo much less is known about their upstream regulators. Here we show that Arhgef7 (also called ßPix or Cool1) is essential for axon formation during cortical development. The loss of Arhgef7 results in an extensive loss of axons in cultured neurons and in the developing cortex. Arhgef7 is a guanine-nucleotide exchange factor (GEF) for Cdc42, a GTPase that has a central role in directing the formation of axons during brain development. However, active Cdc42 was not able to rescue the knockdown of Arhgef7. We show that Arhgef7 interacts with the GTPase TC10 that is closely related to Cdc42. Expression of active TC10 can restore the ability to extend axons in Arhgef7-deficient neurons. Our results identify an essential role of Arhgef7 during neuronal development that promotes axon formation upstream of TC10.


Subject(s)
Axons/physiology , Cell Differentiation , Cerebral Cortex/embryology , Rho Guanine Nucleotide Exchange Factors/metabolism , rho GTP-Binding Proteins/metabolism , Animals , Mice, Inbred C57BL , Mice, Knockout , Rats , Rho Guanine Nucleotide Exchange Factors/deficiency , cdc42 GTP-Binding Protein/metabolism
8.
Prog Neuropsychopharmacol Biol Psychiatry ; 84(Pt B): 306-327, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29309830

ABSTRACT

The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.


Subject(s)
Chromatin/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Epigenomics/methods , Humans , Neurodevelopmental Disorders/pathology , Synapses/pathology
10.
J Neurochem ; 134(2): 354-70, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25864429

ABSTRACT

CDK5 plays an important role in neurotransmission and synaptic plasticity in the normal function of the adult brain, and dysregulation can lead to Tau hyperphosphorylation and cognitive impairment. In a previous study, we demonstrated that RNAi knock down of CDK5 reduced the formation of neurofibrillary tangles (NFT) and prevented neuronal loss in triple transgenic Alzheimer's mice. Here, we report that CDK5 RNAi protected against glutamate-mediated excitotoxicity using primary hippocampal neurons transduced with adeno-associated virus 2.5 viral vector eGFP-tagged scrambled or CDK5 shRNA-miR during 12 days. Protection was dependent on a concomitant increase in p35 and was reversed using p35 RNAi, which affected the down-stream Rho GTPase activity. Furthermore, p35 over-expression and constitutively active Rac1 mimicked CDK5 silencing-induced neuroprotection. In addition, 3xTg-Alzheimer's disease mice (24 months old) were injected in the hippocampus with scrambled or CDK5 shRNA-miR, and spatial learning and memory were performed 3 weeks post-injection using 'Morris' water maze test. Our data showed that CDK5 knock down induced an increase in p35 protein levels and Rac activity in triple transgenic Alzheimer's mice, which correlated with the recovery of cognitive function; these findings confirm that increased p35 and active Rac are involved in neuroprotection. In summary, our data suggest that p35 acts as a mediator of Rho GTPase activity and contributes to the neuroprotection induced by CDK5 RNAi.


Subject(s)
Alzheimer Disease/metabolism , Cyclin-Dependent Kinase 5/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neuropeptides/metabolism , rac1 GTP-Binding Protein/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Blotting, Western , Cyclin-Dependent Kinase 5/genetics , Disease Models, Animal , Fluorescent Antibody Technique , Gene Knockdown Techniques , Hippocampus/metabolism , Hippocampus/pathology , Mice , Mice, Transgenic , Neurons/pathology , RNA, Small Interfering , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Transduction, Genetic , Transfection
11.
Rev Neurosci ; 22(2): 143-52, 2011.
Article in English | MEDLINE | ID: mdl-21476938

ABSTRACT

Neurodegeneration is one of the greatest public health challenges for the 21st century. Among neurodegenerative diseases, Alzheimer's disease (AD) is the most prevalent and best characterized. Nevertheless, despite the large investment in AD research, currently there is no effective therapeutic option. In the present review, we highlight a novel alternative, which takes advantage of the biotechnological outbreak deployed by the discovery of the RNA interference-based gene silencing mechanism, and its application as a tool for neurodegeneration treatment. Here, we highlight cyclin-dependent kinase 5 (CDK5) as a key candidate target for therapeutic gene silencing. Unlike other members of the cyclin-dependent kinase family, CDK5 does not seem to play a crucial role in cell cycle regulation. By contrast, CDK5 participates in multiple functions during nervous system development and has been established as a key mediator of Tau hyperphosphorylation and neurofibrillary pathology, thus serving as an optimal candidate for targeted therapy in the adult nervous system. We propose that the use of RNA interference for CDK5 silencing presents an attractive and specific therapeutic alternative for AD and perhaps against other tauopathies.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/therapy , Cyclin-Dependent Kinase 5/metabolism , RNA Interference/physiology , Animals , Humans , Models, Biological , Neurodegenerative Diseases/enzymology , Phosphorylation
12.
J Neurosci ; 30(42): 13966-76, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20962218

ABSTRACT

Alzheimer's disease is a major cause of dementia for which treatments remain unsatisfactory. Cyclin-dependent kinase 5 (CDK5) is a relevant kinase that has been hypothesized to contribute to the tau pathology. Several classes of chemical inhibitors for CDK5 have been developed, but they generally lack the specificity to distinguish among various ATP-dependent kinases. Therefore, the efficacy of these compounds when tested in animal models cannot definitively be attributed to an effect on CDK5. However, RNA interference (RNAi) targeting of CDK5 is specific and can be used to validate CDK5 as a possible treatment target. We delivered a CDK5 RNAi by lentiviral or adenoassociated viral vectors and analyzed the results in vitro and in vivo. Silencing of CDK5 reduces the phosphorylation of tau in primary neuronal cultures and in the brain of wild-type C57BL/6 mice. Furthermore, the knockdown of CDK5 strongly decreased the number of neurofibrillary tangles in the hippocampi of triple-transgenic mice (3×Tg-AD mice). Our data suggest that this downregulation may be attributable to the reduction of the CDK5 availability in the tissue, without affecting the CDK5 kinase activity. In summary, our findings validate CDK5 as a reasonable therapeutic target for ameliorating tau pathology.


Subject(s)
Alzheimer Disease/genetics , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/physiology , Neurofibrillary Tangles/genetics , Alzheimer Disease/complications , Alzheimer Disease/pathology , Animals , Antibodies, Monoclonal , Blotting, Western , CA1 Region, Hippocampal/metabolism , Fluorescent Antibody Technique , Gene Silencing , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurofibrillary Tangles/pathology , Neurons/metabolism , Phosphorylation , Plasmids/genetics , RNA Interference/physiology , Rats , Rats, Wistar , tau Proteins/genetics , tau Proteins/metabolism
13.
Neurochem Res ; 34(12): 2206-14, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19543831

ABSTRACT

Several studies have linked estrogens with sphingosine kinase (SphK) activity, enzyme responsible of sphingosine-1-phosphate synthesis (S-1P), however their possible interaction in the nervous system is not documented yet. In the present study, we developed a glutamate toxicity model in SH-SY5Y cells to evaluate the possible effect of the inhibition of SphK activity on the protective capability of 17ß-estradiol (E2). Glutamate induced cytoskeletal actin changes associated to cytotoxic stress, significant increase of apoptotic-like nuclear fragmentation, Tau hyperphosphorylation and increase of p25/p35 cleavage. These effects were prevented by E2 pre-treatment during 24 h. Although the inhibition of SphK did not block this protective effect, significantly increased Tau hyperphosphorylation by glutamate, in a way that was not reverted by E2. Our results suggest that the decrease of glutamate-induced Tau hyperphosphorylation by 17ß-estradiol requires SphK.


Subject(s)
Estradiol/pharmacology , Glutamic Acid/toxicity , Phosphotransferases (Alcohol Group Acceptor)/physiology , tau Proteins/metabolism , Actins/drug effects , Apoptosis/drug effects , Cell Line, Tumor , DNA Fragmentation/drug effects , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neuroblastoma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism
14.
Colomb. med ; 39(3,supl): 38-45, jul.-sept. 2008. ilus, graf
Article in Spanish | LILACS | ID: lil-573399

ABSTRACT

Introducción: Un componente molecular predominante en el estudio de las enfermedades neurodegenerativas es la presencia del complejo Tau-GSK3β y su asociación con agregados proteicos al interior de la célula. Evidencias considerables muestran que GSK3β es el principal causante de la hiperfosforilación de Tau. Sin embargo, son poco claros los eventos moleculares que gobiernan este complejo. Objetivo: Determinar el efecto del 17 β-estradiol en la expresión y asociación de las quinasas responsables de la hiperfosforilación de Tau. Métodos: Se realizaron tratamientos con 17 β-estradiol en hipocampo de rata Wistar adulta ovariectomizada y en cultivos primarios de hipocampo de rata tratados con b-amiloide. Se evaluó la asociación de complejos proteicos por co-inmunoprecipitación, ensayo de toxicidad por liberación LDH y cambios morfológicos celulares por microscopía confocal. Resultados: Este estudio mostró evidencias de que el estradiol disocia complejos macromoleculares como Tau/GSK3β, Tau/GluR2/3, Tau/FAK, Tau/Fyn en hipocampo de rata adulta. Ademßs, disminuyó la expresión de GSK3β-ptyr por el tratamiento hormonal y éste reguló la defosforilación de Tau en un modelo de excitoxicidad poráβ-amiloide. Conclusiones: Lo anterior sugiere, nuevos blancos que contribuyen al estudio de la neuroprotección y plasticidad neuronal mediada por el estrógeno.


Introduction: A predominant molecular component analyzed in the study of neurodegenerative diseases is the presence of the Tau-GSK3β complex and its association with protein aggregation into the cell. Several evidences show that GSK3β has an important role in abnormal pattern of the phosphorylation of Tau. However, the molecular events that are governing this complex are unknown. Aim: To determine the effect of 17 β-estradiol treatment on the expression and association of Tau hyperphosphorylation responsible kinases. Methods: 17 β-estradiol treatments were realized in the hippocampus of ovariectomized adult wistar rats and in hippocampal primary cultures treated with β-amiloid. Protein complex association was assessed by co-immunoprecipitation, toxicity assay by LDH release and cell morphologic changes by confocal microscopy. Results: Our results show that 17β-estradiol produced dissociation of macromolecular complexes like Tau/GSK3β, Tau /GluR2/3, Tau/FAK, and Tau/Fyn in hippocampus of adult rat. In addition the expression of GSK3β-ptyr was decreased by the hormonal treatment and this one regulated the defosforilation of Tau in an excitotoxicity model by β-amiloid. Conclusions: It suggests new targets that will contribute to neuroprotection and neuronal plasticity studies mediated by the estrogen.


Subject(s)
Amyloid , Estradiol , Neuronal Plasticity , Phosphotransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...