Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 922: 171250, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38423314

ABSTRACT

In this work, organic chemicals associated with microplastics (MPs) exposed to a coastal anthropogenized environment for up to eight weeks have been screened for, in order to discern the (de)sorption dynamics of chemicals in the marine ecosystem. Low-density polyethylene (LDPE) pellets were studied since they represent primary MPs used by the plastic industry and a relevant input of MPs into the oceans. To maximize the coverage of chemicals that could be detected, both liquid and gas chromatography coupled to quadrupole-time-of-flight (GC-QTOF and LC-QTOF, respectively) were used. In the case of LC-QTOF, an electrospray ionization source was employed, and the compounds were investigated by combining suspect and non-target screening workflows. The GC-QTOF was equipped with an electron ionization source and compounds were screened in raw and derivatized (silylated) extracts by deconvolution and contrast to high- and low-resolution libraries. A total of 50 compounds of multifarious classes were tentatively identified. Among them, melamine and 2-ethylhexyl salicylate (EHS) were detected in the original MPs but were rapidly desorbed. Melamine was completely released into the marine environment, while EHS was partly released but a portion remained bound to the MPs. On the other hand, many other chemicals of both anthropogenic (e.g. phenanthrene or benzophenone) and natural origin (e.g. betaine and several fatty acids) accumulated onto MPs over time. Quantification of 12 unequivocally identified chemicals resulted into a total concentration of 810 µg/kg after MPs exposure for 8 weeks.

2.
Sci Total Environ ; 826: 154027, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35217040

ABSTRACT

Notwithstanding the fact that microplastic fragments were encountered in the human stool, little effort has been geared towards elucidating the impact of chemical additives upon the human health. In this work, standardized bioaccessibility tests under both fasting and fed conditions are herein applied to the investigation of human oral bioaccessibility of plastic additives and monomers (i.e. eight phthalate esters (PAEs) and bisphenol A (BPA)) in low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics. The generation of phthalate monoesters is evaluated in the time course of the bioaccessibility tests. Maximum gastric and gastrointestinal bioaccessibility fractions are obtained for dimethyl phthalate, diethyl phthalate and BPA, within the range of 55-83%, 40-68% and 37-67%, respectively, increasing to 56-92% and 41-70% for dimethyl phthalate and diethyl phthalate, respectively, whenever their hydrolysis products are considered. Bioaccessibility fractions of polar PAEs are dependent upon the physicochemical characteristics of the microplastics, with greater bioaccessibility for the rubbery polymer (LDPE). With the method herein proposed, oral bioaccessible pools of moderately to non-polar PAEs can be also accurately assessed for risk-assessment explorations, with values ranging from 1.8% to 32.2%, with again significantly larger desorption percentages for LDPE. Our results suggested that the highest gastric/gastrointestinal bioaccessibility of the eight PAEs and BPA is reached under fed-state gastrointestinal extraction conditions because of the larger amounts of surface-active biomolecules. Even including the bioaccessibility factor within human risk assessment/exposure studies to microplastics, concentrations of dimethyl phthalate, di-n-butyl phthalate and BPA exceeding 0.3% (w/w) may pose severe risks after oral uptake in contrast to the more hydrophobic congeners for which concentrations above 3% (w/w), except for diethylhexyl phthalate, would be tolerated.


Subject(s)
Microplastics , Phthalic Acids , Benzhydryl Compounds , Dibutyl Phthalate , Eating , Esters , Fasting , Humans , Phenols , Plastics , Polyethylene
3.
Anal Bioanal Chem ; 414(21): 6327-6340, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34865195

ABSTRACT

This work presents an optimized gas chromatography-electron ionization-high-resolution mass spectrometry (GC-EI-HRMS) screening method. Different method parameters affecting data processing with the Agilent Unknowns Analysis SureMass deconvolution software were optimized in order to achieve the best compromise between false positives and false negatives. To this end, an accurate-mass library of 26 model compounds was created. Then, five replicates of mussel extracts were spiked with a mixture of these 26 compounds at two concentration levels (10 and 100 ng/g dry weight in mussel, 50 and 500 ng/mL in extract) and injected in the GC-EI-HRMS system. The results of these experiments showed that accurate mass tolerance and pure weight factor (combination of reverse-forward library search) are the most critical factors. The validation of the developed method afforded screening detection limits in the 2.5-5 ng range for passive sampler extracts and 1-2 ng/g for mussel sample extracts, and limits of quantification in the 0.6-3.2 ng and 0.1-1.8 ng/g range, for the same type of samples, respectively, for 17 model analytes. Once the method was optimized, an accurate-mass HRMS library, containing retention indexes, with ca. 355 spectra of derivatized and non-derivatized compounds was generated. This library (freely available at https://doi.org/10.5281/zenodo.5647960 ), together with a modified Agilent Pesticides Library of over 800 compounds, was applied to the screening of passive samplers, both of polydimethylsiloxane and polar chemical integrative samplers (POCIS), and mussel samples collected in Galicia (NW Spain), where a total of 75 chemicals could be identified.


Subject(s)
Bivalvia , Pesticides , Animals , Electrons , Gas Chromatography-Mass Spectrometry/methods , Pesticides/analysis , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...