Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36839718

ABSTRACT

Cell-penetrating peptides (CPPs) are highly promising transfection agents that can deliver various compounds into living cells, including nucleic acids (NAs). Positively charged CPPs can form non-covalent complexes with negatively charged NAs, enabling simple and time-efficient nanoparticle preparation. However, as CPPs have substantially different chemical and physical properties, their complexation with the cargo and characteristics of the resulting nanoparticles largely depends on the properties of the surrounding environment, i.e., solution. Here, we show that the solvent used for the initial dissolving of a CPP determines the properties of the resulting CPP particles formed in an aqueous solution, including the activity and toxicity of the CPP-NA complexes. Using different biophysical methods such as dynamic light scattering (DLS), atomic force microscopy (AFM), transmission and scanning electron microscopy (TEM and SEM), we show that PepFect14 (PF14), a cationic amphipathic CPP, forms spherical particles of uniform size when dissolved in organic solvents, such as ethanol and DMSO. Water-dissolved PF14, however, tends to form micelles and non-uniform aggregates. When dissolved in organic solvents, PF14 retains its α-helical conformation and biological activity in cell culture conditions without any increase in cytotoxicity. Altogether, our results indicate that by using a solvent that matches the chemical nature of the CPP, the properties of the peptide-cargo particles can be tuned in the desired way. This can be of critical importance for in vivo applications, where CPP particles that are too large, non-uniform, or prone to aggregation may induce severe consequences.

2.
Materials (Basel) ; 15(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35268882

ABSTRACT

Polydimethylsiloxane (PDMS) is the most widely used silicon-based polymer due to its versatility and its various attractive properties. The fabrication of PDMS involves liquid phase cross-linking to obtain hydrophobic and mechanically flexible material in the final solid form. This allows to add various fillers to affect the properties of the resulting material. PDMS has a relatively low Thermal Conductivity (TC), in the order of 0.2 W/mK, which makes it attractive for thermal insulation applications such as sealing in construction. Although a further decrease in the TC of PDMS can be highly beneficial for such applications, most research on the thermal properties of PDMS composites have focused on fillers that increase the TC rather than decrease it. In the present work, we propose a simple and reliable method for making a PDMS-based composite material with significantly improved thermal insulation properties, by adding hollow glass microspheres (HGMs) to the mixture of the liquid base and the cross-linker (10:1 ratio), followed by degassing and heat-assisted crosslinking. We obtained a 31% reduction of thermal conductivity and a 60% increase in the elastic modulus of samples with HGM content of 17% by weight. At the same time, the sound insulation capacity of the PDMS-HGM composite is slightly decreased in comparison to pure PDMS, as a result of its lower density. Finally, the wettability of the samples had no dependence on HGM content.

3.
Beilstein J Nanotechnol ; 11: 61-67, 2020.
Article in English | MEDLINE | ID: mdl-31976197

ABSTRACT

In the present paper, we investigate the effect of heat treatment on the geometry and mobility of Au nanoparticles (NPs) on a Si substrate. Chemically synthesized Au NPs of diameter ranging from 5 to 27 nm were annealed at 200, 400, 600 and 800 °C for 1 h. A change in the geometry from faceted to more rounded shapes were observed with increasing annealing temperature. Kinetic Monte Carlo simulations indicate that the NPs become rounded due to the minimization of the surface area and the transition to lower energy surface types {111} and {100}. The NPs were manipulated on a silica substrate with an atomic force microscope (AFM) in tapping mode. Initially, the NPs were immovable by AFM energy dissipation. However, annealed NPs became movable, and less energy was required to displace the NPs annealed at higher temperature. However, after annealing at 800 °C, the particles became immovable again. This effect was attributed to the diffusion of Au into the Si substrate and to the growth of the SiO2 layer.

4.
Micron ; 124: 102686, 2019 09.
Article in English | MEDLINE | ID: mdl-31202033

ABSTRACT

Mechanical characterisation of individual nanostructures is a challenging task and can greatly benefit from the utilisation of several alternative approaches to increase the reliability of results. In the present work, we have measured and compared the elastic modulus of five-fold twinned gold nanowires (NWs) with atomic force microscopy (AFM) indentation in three different test configurations: three-point bending with fixed ends, three-point bending with free ends and cantilevered-beam bending. The free-ends condition was realized by introducing a novel approach where the NW is placed diagonally inside an inverted pyramid chemically etched in a silicon wafer. In addition, all three configurations were simulated with a finite element method to obtain better insight into stress distribution inside NWs during bending depending on test conditions. The free-ends configuration yielded elastic modulus similar to a classical fixed-ends approach (88 ±â€¯20 GPa vs 87 ±â€¯16 GPa), indicating the reliability of the proposed method. At the same time, the free-ends configuration benefits from a more favourable NW position relative to the probe with facet facing upwards in contrast to the sharp edge in the case of fixed ends. From the other hand, the free-ends configuration was less suitable for strength measurements, as NW can run into the bottom of the inverted pyramid because of a higher degree of deformation before fracture. The cantilevered-beam configuration was less suitable for mechanical testing with indentation because of the instabilities of the free end under the AFM probe.

5.
Beilstein J Nanotechnol ; 9: 660-670, 2018.
Article in English | MEDLINE | ID: mdl-29527440

ABSTRACT

Adhesion forces between functionalized gold colloidal nanoparticles (Au NPs) and scanning probe microscope silicon tips were experimentally investigated by atomic force microscopy (AFM) equipped with PeakForce QNM (Quantitative Nanoscale Mechanics) module. Au NPs were synthesized by a seed-mediated process and then functionalized with thiols containing different functional groups: amino, hydroxy, methoxy, carboxy, methyl, and thiol. Adhesion measurements showed strong differences between NPs and silicon tip depending on the nature of the tail functional group. The dependence of the adhesion on ligand density for different thiols with identical functional tail-group was also demonstrated. The calculated contribution of the van der Waals (vdW) forces between particles was in good agreement with experimentally measured adhesive values. In addition, the adhesion forces were evaluated between flat Au films functionalized with the same molecular components and silicon tips to exclude the effect of particle shape on the adhesion values. Although adhesion values on flat substrates were higher than on their nanoparticle counterparts, the dependance on functional groups remained the same.

6.
Nanotechnology ; 29(19): 195707, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29469059

ABSTRACT

High surface energy of individual nanostructures leads to high adhesion and static friction that can completely hinder the operation of nanoscale systems with movable parts. For instance, silver or gold nanowires cannot be moved on silicon substrate without plastic deformation. In this paper, we experimentally demonstrate an operational prototype of a low-friction nanojoint. The movable part of the prototype is made either from a gold or silver nano-pin produced by laser-induced partial melting of silver and gold nanowires resulting in the formation of rounded bulbs on their ends. The nano-pin is then manipulated into the inverted pyramid (i-pyramids) specially etched in a Si wafer. Due to the small contact area, the nano-pin can be repeatedly tilted inside an i-pyramid as a rigid object without noticeable deformation. At the same time in the absence of external force the nanojoint is stable and preserves its position and tilt angle. Experiments are performed inside a scanning electron microscope and are supported by finite element method simulations.

7.
Nanotechnology ; 28(50): 505707, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29087364

ABSTRACT

The proper choice of coating materials and methods in core-shell nanowire (NW) engineering is crucial to assuring improved characteristics or even new functionalities of the resulting composite structures. In this paper, we have reported electron-beam-induced reversible elastic-to-plastic transition in Ag/Al2O3 and Au/Al2O3 NWs prepared by the coating of Ag and Au NWs with Al2O3 by low-temperature atomic layer deposition. The observed phenomenon enabled freezing the bent core-shell NW at any arbitrary curvature below the yield strength of the materials and later restoring its initially straight profile by irradiating the NW with electrons. In addition, we demonstrated that the coating efficiently protects the core material from fracture and plastic yield, allowing it to withstand significantly higher deformations and stresses in comparison to uncoated NW.

8.
Nanotechnology ; 27(33): 335701, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27377119

ABSTRACT

In the present work, we demonstrate a novel approach to nanotribological measurements based on the bending manipulation of hexagonal ZnO nanowires (NWs) in an adjustable half-suspended configuration inside a scanning electron microscope. A pick-and-place manipulation technique was used to control the length of the adhered part of each suspended NW. Static and kinetic friction were found by a 'self-sensing' approach based on the strain profile of the elastically bent NW during manipulation and its Young's modulus, which was separately measured in a three-point bending test with an atomic force microscope. The calculation of static friction from the most bent state was completely reconsidered and a novel more realistic crack-based model was proposed. It was demonstrated that, in contrast to assumptions made in previously published models, interfacial stresses in statically bent NW are highly localized and interfacial strength is comparable to the bending strength of NW measured in respective bending tests.

9.
J Environ Sci Health B ; 51(7): 455-64, 2016 Jul 02.
Article in English | MEDLINE | ID: mdl-27050772

ABSTRACT

The aim of the study was to provide a comprehensive overview of neonicotinoid pesticide residues in honey samples for a single country and compare the results with the import data for neonicotinoid pesticides. The levels of four neonicotinoid pesticides, namely thiamethoxam, imidacloprid, acetamiprid, and thiacloprid, were determined in 294 honey samples harvested from 2005 to 2013 from more than 200 locations in Estonia. For the analyzed honey samples, 27% contained thiacloprid, and its levels in all cases were below the maximum residue level set by the European Union. The other neonicotinoids were not detected. The proportion of thiacloprid-positive samples for different years correlates well with the data on thiacloprid imports into Estonia, indicating that honey contamination with neonicotinoids can be estimated based on the import data.


Subject(s)
Honey/analysis , Insecticides/analysis , Pesticide Residues/analysis , Chromatography, Liquid/methods , Estonia , Imidazoles/analysis , Neonicotinoids , Nitro Compounds/analysis , Oxazines/analysis , Pyridines/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Thiamethoxam , Thiazines/analysis , Thiazoles/analysis
10.
Beilstein J Nanotechnol ; 5: 1808-14, 2014.
Article in English | MEDLINE | ID: mdl-25383292

ABSTRACT

The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol-gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoindentation and three point bending tests of NTs were performed by atomic force microscopy (AFM) under ambient conditions. Half-suspended and three-point bending tests were processed in the framework of linear elasticity theory. Finite element method simulations were used to extract Young's modulus values from the nanoindentation data. Finally, the Young's moduli of SiO2 NTs measured by different methods were compared and discussed.

11.
Nanotechnology ; 25(41): 415703, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25249192

ABSTRACT

The changes in optical properties during TiO2 nanowire orientation in polydimethylsiloxane (PDMS) matrix under the influence of an electric field are strongly influenced by nanowire (NW) diameter. It was demonstrated for the first time that either positive or negative change in transmittance can be induced by NW alignment parallel to the electric field depending on the NW diameter. These effects can be explained by the interplay between scattering and reflectance. Experimental findings reported could be important for smart window applications for the regulation of visible or even infrared transparency, thus reducing the energy consumption by air conditioning systems in buildings and automobiles in the future.

12.
Nano Lett ; 14(9): 5201-5, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25162144

ABSTRACT

The combination of two different materials in a single composite core-shell heterostructure can lead to improved or even completely novel properties. In this work we demonstrate the enhancement of the mechanical properties of silver (Ag) nanowires (NW) achieved by coating them with a silica (SiO2) shell. In situ scanning electron microscope (SEM) nanomechanical tests of Ag-SiO2 core-shell nanowires reveal an improved fracture resistance and an electron-beam induced shape restoration effect. In addition, control experiments are conducted separately on uncoated Ag NWs and on empty SiO2 shells in order to gain deeper insight into the peculiar properties of Ag-SiO2. Test conditions are simulated using finite-element methods; possible mechanisms responsible for the shape restoration and the enhanced fracture resistance are discussed.

13.
Nanoscale Res Lett ; 9(1): 186, 2014.
Article in English | MEDLINE | ID: mdl-24872795

ABSTRACT

In this paper, metal nanodumbbells (NDs) formed by laser-induced melting of Ag nanowires (NWs) on an oxidized silicon substrate and their tribological properties are investigated. The mechanism of ND formation is proposed and illustrated with finite element method simulations. Tribological measurements consist in controllable real-time manipulation of NDs inside a scanning electron microscope (SEM) with simultaneous force registration. The geometry of NDs enables to distinguish between different types of motion, i.e. rolling, sliding and rotation. Real contact areas are calculated from the traces left after the displacement of NDs and compared to the contact areas predicted by the contact mechanics and frozen droplet models. PACS: 81.07.-b; 62.25.-g; 62.23.Hj.

14.
Nanoscale Res Lett ; 9(1): 143, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24666921

ABSTRACT

Silica-gold core-shell nanoparticles were used for plasmonic enhancement of rare earth fluorescence in sol-gel-derived TiO2:Sm3+ films. Local enhancement of Sm3+ fluorescence in the vicinity of separate gilded nanoparticles was revealed by a combination of dark field microscopy and fluorescence spectroscopy techniques. An intensity enhancement of Sm3+ fluorescence varies from 2.5 to 10 times depending on the used direct (visible) or indirect (ultraviolet) excitations. Analysis of fluorescence lifetimes suggests that the locally stronger fluorescence occurs because of higher plasmon-coupled direct absorption of exciting light by the Sm3+ ions or due to plasmon-assisted non-radiative energy transfer from the excitons of TiO2 host to the rare earth ions. PACS: 78; 78.67.-n; 78.67.Bf.

15.
Beilstein J Nanotechnol ; 5: 133-40, 2014.
Article in English | MEDLINE | ID: mdl-24605279

ABSTRACT

In this work polyhedron-like gold and sphere-like silver nanoparticles (NPs) were manipulated on an oxidized Si substrate to study the dependence of the static friction and the contact area on the particle geometry. Measurements were performed inside a scanning electron microscope (SEM) that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF) with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed.

16.
J Am Soc Mass Spectrom ; 23(12): 2051-4, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23001970

ABSTRACT

A novel electrospray nebulizer has been designed, which includes an additional nebulization gas capillary inside the liquid capillary. This design offers significantly enhanced ionization efficiency compared with the classic nebulizer design and leads to improved sensitivity (by three to 10 times) and decreases the detection limit, on an average 10 times. We see these results as the first step in the design of ESI nebulizers offering improved sensitivity and higher robustness. Possible future developments would include optimization of the dimensions of the capillaries as well as testing the nebulizer for other matrices and analytes.

17.
Nanotechnology ; 22(30): 305711, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21730751

ABSTRACT

The aim of this work was to study the formation process of dielectrophoretic (DEP) carbon nanotube fibers (CNT-fibers) and characterize the fiber properties relevant to their technological applications. The fiber diameter was shown to increase when applied voltage was increased (up to 350 V(pp)) and when retraction speed was decreased (down from 400 µm s(-1)) in accordance with theoretical expectations. This paper represents the first demonstration of the formation of thick DEP CNT-fibers (up to ∼ ∅0.4 mm). This is an intriguing result, as it expands the diversity of possible applications of the fibers and facilitates their characterization by analytical methods that require large quantities of the material. The performance of these thick fibers was as follows: a density of ∼ 0.35 g cm(-3), a tensile strength of ∼ 15 MPa, a Young's modulus of ∼ 1 GPa, and an electrical resistivity of ∼ 70 mΩ cm.

18.
J Chromatogr A ; 1216(32): 5949-54, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19552910

ABSTRACT

A new scheme for the quantitative determination of traces of fluoroquinolones (FQs), tetracyclines (TCs) and sulfonamides (SAs) in sewage sludge was developed. The compounds were simultaneously extracted from sewage sludge by pressurized liquid extraction (PLE). A novel and effective method for PLE was developed. Solid-phase extraction was used for cleaning up the extracts. Identification and quantification of the compounds was done using high-performance liquid chromatography with electrospray ionization mass spectrometry in selected reaction monitoring mode. The best recovery of FQs and TCs was obtained by using hydrophilic-lipophilic balance cartridges, recoveries ranged 59% for norfloxacin to 82% for ofloxacin and 95% for doxycycline; for SAs strong cation-exchange cartridges were more efficient, recoveries were 96% for sulfamethoxazole and 43% for sulfadimethoxine. Limit of quantification ranged from 0.1 ng/g for SAs to 160 ng/g for tetracycline. Method precision for TCs was 5.06% and 1.12%, and for SAs 0.43% and 2.01%. FQs precision ranged from 0.77% to 1.89%.


Subject(s)
Chromatography, Liquid/methods , Fluoroquinolones/analysis , Sewage/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Sulfonamides/analysis , Tetracyclines/analysis , Chemical Fractionation/instrumentation , Chemical Fractionation/methods , Equipment Design , Pressure , Reproducibility of Results , Sensitivity and Specificity , Solid Phase Extraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...