Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2307322, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225703

ABSTRACT

Biofilms, comprised of cells embedded in extracellular matrix (ECM), enable bacterial surface colonization and contribute to pathogenesis and biofouling. Yet, antibacterial surfaces are mainly evaluated for their effect on bacterial cells rather than the ECM. Here, a method is presented to separately quantify amounts and distribution of cells and ECM in Salmonella biofilms grown on electroactive poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS). Within a custom-designed biofilm reactor, biofilm forms on PEDOT:PSS surfaces electrically addressed with a bias potential and simultaneous recording of the resulting current. The amount and distribution of cells and ECM in biofilms are analyzed using a fluorescence-based spectroscopic mapping technique and fluorescence confocal microscopy combined with advanced image processing. The study shows that surface charge leads to upregulated ECM production, leaving the cell counts largely unaffected. An altered texture is also observed, with biofilms forming small foci or more continuous structures. Supported by mutants lacking ECM production, ECM is identified as an important target when developing antibacterial strategies. Also, a central role for biofilm distribution is highlighted that likely influences antimicrobial susceptibility in biofilms. This work provides yet a link between conductive polymer materials and bacterial metabolism and reveals for the first time a specific effect of electrochemical addressing on bacterial ECM formation.

2.
Front Pharmacol ; 13: 1034964, 2022.
Article in English | MEDLINE | ID: mdl-36339537

ABSTRACT

A prodrug approach is a powerful method to temporarily change the physicochemical and thus, pharmacokinetic properties of drugs. However, in site-selective targeted prodrug delivery, tissue or cell-specific bioconverting enzyme is needed to be utilized to release the active parent drug at a particular location. Unfortunately, ubiquitously expressed enzymes, such as phosphatases and carboxylesterases are well used in phosphate and ester prodrug applications, but less is known about enzymes selectively expressed, e.g., in the brain and enzymes that can hydrolyze more stable prodrug bonds, such as amides and carbamates. In the present study, L-type amino acid transporter 1 (LAT1)-utilizing amide prodrugs bioconverting enzyme was identified by gradually exploring the environment and possible determinants, such as pH and metal ions, that affect amide prodrug hydrolysis. Based on inducement by cobalt ions and slightly elevated pH (8.5) as well as localization in plasma, liver, and particularly in the brain, aminopeptidase B was proposed to be responsible for the bioconversion of the majority of the studied amino acid amide prodrugs. However, this enzyme hydrolyzed only those prodrugs that contained an aromatic promoiety (L-Phe), while leaving the aliphatic promoeities (L-Lys) and the smallest prodrug (with L-Phe promoiety) intact. Moreover, the parent drugs' structure (flexibility and the number of aromatic rings) largely affected the bioconversion rate. It was also noticed in this study, that there were species differences in the bioconversion rate by aminopeptidase B (rodents > human), although the in vitro-in vivo correlation of the studied prodrugs was relatively accurate.

3.
Chembiochem ; 23(11): e202100684, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35298076

ABSTRACT

Optotracers are conformation-sensitive fluorescent tracer molecules that detect peptide- and carbohydrate-based biopolymers. Their binding to bacterial cell walls allows selective detection and visualisation of Staphylococcus aureus (S. aureus). Here, we investigated the structural properties providing optimal detection of S. aureus. We quantified spectral shifts and fluorescence intensity in mixes of bacteria and optotracers, using automatic peak analysis, cross-correlation, and area-under-curve analysis. We found that the length of the conjugated backbone and the number of charged groups, but not their distribution, are important factors for selective detection of S. aureus. The photophysical properties of optotracers were greatly improved by incorporating a donor-acceptor-donor (D-A-D)-type motif in the conjugated backbone. With significantly reduced background and binding-induced on-switch of fluorescence, these optotracers enabled real-time recordings of S. aureus growth. Collectively, this demonstrates that chemical structure and photophysics are key tunable characteristics in the development of optotracers for selective detection of bacterial species.


Subject(s)
Fluorescence Resonance Energy Transfer , Staphylococcus aureus , Bacteria
4.
Environ Microbiol ; 23(8): 4360-4371, 2021 08.
Article in English | MEDLINE | ID: mdl-34081381

ABSTRACT

Natural products play a vital role for intermicrobial interactions. In the basidiomycete arena an important representative is variegatic acid, a lactone natural product pigment whose ecological relevance stems from both inhibiting bacterial swarming and from indirect participation in breakdown of organic matter by brown-rotting fungi. Previous work showed that the presence of bacteria stimulates variegatic acid production. However, the actual external molecular trigger that prompts its biosynthesis in the mushroom hyphae remained unknown. Here, we report on the identification of Bacillus subtilis subtilisin E (AprE) and chitosanase (Csn) as primary inducers of pulvinic acid pigment formation. Using the established co-culture system of B. subtilis and Serpula lacrymans, we used activity-guided FPLC-based fractionation of B. subtilis culture supernatants and subsequent peptide fingerprinting to identify candidates, and their role was corroborated by means of a pigment production assay using heterologously produced chitosanase and subtilisin. B. subtilis mutants defective in either the aprE or the csn gene still triggered pigmentation, yet to a lower degree, which points to a multicausal scenario and suggests the combined activity of these cell wall polymer-attacking enzymes as true stimulus.


Subject(s)
Agaricales , Basidiomycota , Biological Products , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Basidiomycota/genetics , Cell Wall
5.
Int J Pharm ; 601: 120565, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33812973

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) can have protective effects in the brain by inhibition of cyclooxygenases (COX). However, the delivery into the brain across the blood-brain barrier (BBB) and particularly into the brain parenchymal cells is hindered. Therefore, in the present study, we developed four l-type amino acid transporter 1 (LAT1)-utilizing prodrugs of flurbiprofen, ibuprofen, naproxen, and ketoprofen, since LAT1 is expressed on both, the BBB endothelial cells as well as parenchymal cells. The cellular uptake and utilization of LAT1 by novel prodrugs were studied in mouse cortical primary astrocytes and immortalized microglia (BV2), and the release of the parent NSAID in several tissue and cell homogenates. Finally, the effects of the studied prodrugs on prostaglandin E2 (PGE2) production and cell viability were explored. The gained results showed that all four prodrugs were carried into their target cells via LAT1. They also released their parent NSAIDs via carboxylesterases (CES) and most likely also other un-identified enzymes, which need to be carefully considered when administrating these compounds orally or intravenously. Most importantly, all the studied prodrugs reduced the PGE2 production in astrocytes and microglia after lipopolysaccharide (LPS)-induced inflammation by 29-94% and without affecting the cell viability with the studied concentration (20 µM).


Subject(s)
Astrocytes , Prodrugs , Animals , Anti-Inflammatory Agents, Non-Steroidal , Endothelial Cells , Large Neutral Amino Acid-Transporter 1 , Mice , Microglia , Prostaglandins
7.
ACS Chem Neurosci ; 11(24): 4301-4315, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33228353

ABSTRACT

Membrane transporters have long been utilized to improve the oral, hepatic, and renal (re)absorption. In the brain, however, the transporter-mediated drug delivery has not yet been fully achieved due to the complexity of the blood-brain barrier (BBB). Because L-type amino acid transporter 1 (LAT1) is a good candidate to improve the brain delivery, we developed here four novel LAT1-utilizing prodrugs of four nonsteroidal anti-inflammatory drugs. As a result, all the prodrugs were able to cross the BBB and localize into the brain cells. The brain uptake of salicylic acid (SA) was improved five times, not only across the mouse BBB but also into the cultured mouse and human brain cells. The naproxen prodrug was also transported efficiently into the mouse brain achieving less peripheral exposure, but the brain release of naproxen from the prodrug was not improved. Contrarily, the high plasma protein binding of the flurbiprofen prodrug and the premature bioconversion of the ibuprofen prodrug in the mouse blood hindered the efficient brain delivery. Thus, the structure of the parent drug affects the successful brain delivery of the LAT1-utilizing prodrugs, and the small-sized LAT1-utilizing prodrug of SA constituted a successful model to specifically deliver its parent drug across the mouse BBB and into the cultured mouse and human brain cells.


Subject(s)
Blood-Brain Barrier , Prodrugs , Animals , Biological Transport , Blood-Brain Barrier/metabolism , Brain/metabolism , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Mice
8.
NPJ Biofilms Microbiomes ; 6(1): 35, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33037198

ABSTRACT

Methods for bacterial detection are needed to advance the infection research and diagnostics. Based on conformation-sensitive fluorescent tracer molecules, optotracing was recently established for dynamic detection and visualization of structural amyloids and polysaccharides in the biofilm matrix of gram-negative bacteria. Here, we extend the use of optotracing for detection of gram-positive bacteria, focussing on the clinically relevant opportunistic human pathogen Staphylococcus aureus. We identify a donor-acceptor-donor-type optotracer, whose binding-induced fluorescence enables real-time detection, quantification, and visualization of S. aureus in monoculture and when mixed with gram-negative Salmonella Enteritidis. An algorithm-based automated high-throughput screen of 1920 S. aureus transposon mutants recognized the cell envelope as the binding target, which was corroborated by super-resolution microscopy of bacterial cells and spectroscopic analysis of purified cell wall components. The binding event was essentially governed by hydrophobic interactions, which permitted custom-designed tuning of the binding selectivity towards S. aureus versus Enterococcus faecalis by appropriate selection of buffer conditions. Collectively this work demonstrates optotracing as an enabling technology relevant for any field of basic and applied research, where visualization and detection of S. aureus is needed.


Subject(s)
Bacteriological Techniques/methods , Mutation , Salmonella enteritidis/growth & development , Staphylococcus aureus/isolation & purification , Thiophenes/chemistry , Algorithms , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/ultrastructure , DNA Transposable Elements , Fluorescence , High-Throughput Screening Assays , Humans , Microscopy, Fluorescence , Polysaccharides, Bacterial/metabolism , Spectrometry, Fluorescence , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development
9.
Dalton Trans ; 49(32): 11413, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32729587

ABSTRACT

Correction for 'Substrate and product binding inside a stimuli-responsive coordination cage acting as a singlet oxygen photosensitizer' by Sonja Pullen et al., Dalton Trans., 2020, 49, 9404-9410, DOI: 10.1039/D0DT01674H.

10.
Dalton Trans ; 49(27): 9404-9410, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32589176

ABSTRACT

An acridone-based, interpenetrated double cage [3BF4Pd4L8] acts as a photosensitizer for generating singlet oxygen which adds to 1,3-cyclohexadiene in a [2+4] hetero-Diels-Alder reaction to form 2,3-dioxabicyclo[2.2.2]oct-5-ene. Photocatalytic activity was exclusively observed for the assembled cage, whereas the free organic ligand L decomposes upon irradiation. While cage [3BF4Pd4L8] does not accept any organic guests, NMR, MS and single crystal X-ray results reveal that both substrate and product are readily encapsulated in the central pocket of its chloride-activated form [2Cl@Pd4L8]. The system combines multiple functions (photosensitization, allosteric activation and guest uptake) within a structurally complex, mechanically-bound self-assembly built up from a simple and readily accessible ligand.

11.
Front Chem ; 7: 265, 2019.
Article in English | MEDLINE | ID: mdl-31058140

ABSTRACT

Fast and accurate detection of bacteria and differentiation between pathogenic and commensal colonization are important keys in preventing the emergence and spread of bacterial resistance toward antibiotics. As bacteria undergo major lifestyle changes during colonization, bacterial sensing needs to be achieved on different levels. In this review, we describe how conjugated oligo- and polymers are used to detect bacterial colonization. We summarize how oligothiophene derivatives have been tailor-made for detection of biopolymers produced by a wide range of bacteria upon entering the biofilm lifestyle. We further describe how these findings are translated into diagnostic approaches for biofilm-related infections. Collectively, this provides an overview on how synthetic biorecognition elements can be used to produce fast and easy diagnostic tools and new methods for infection control.

12.
Front Microbiol ; 9: 1530, 2018.
Article in English | MEDLINE | ID: mdl-30042754

ABSTRACT

Achieving fast antimicrobial susceptibility results is a primary goal in the fight against antimicrobial resistance. Standard antibiotic susceptibility testing (AST) takes, however, at least a day from patient sample to susceptibility profile. Here, we developed and clinically validated a rapid phenotypic AST based on a miniaturized nanotiter plate, the nanowell slide, that holds 672 wells in a 500 nl format for bacterial cultivation. The multitude of nanowells allows multiplexing with a panel of six antibiotics relevant for urinary tract infections. Inclusion of seven concentrations per antibiotic plus technical replicates enabled us to determine a precise minimum inhibitory concentration for 70 clinical uropathogenic Escherichia coli isolates. By combining optical recordings of bacterial growth with an algorithm for optical signal analysis, we calculated Tlag, the point of transition from lag to exponential phase, in each nanoculture. Algorithm-assisted analysis determined antibiotic susceptibility as early as 3 h 40 min. In comparison to standard disk diffusion assays, the nanowell AST showed a total categorical agreement of 97.9% with 2.6% major errors and 0% very major errors for all isolate-antibiotic combination tested. Taking advantage of the optical compatibility of the nanowell slide, we performed microscopy to illustrate its potential in defining susceptibility profiles based on bacterial morphotyping. The excellent clinical performance of the nanowell AST, combined with a short detection time, morphotyping, and the very low consumption of reagents clearly show the advantage of this phenotypic AST as a diagnostic tool in a clinical setting.

13.
Chem Commun (Camb) ; 53(87): 11933-11936, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29048081

ABSTRACT

A halide-triggered metallosupramolecular host was systematically studied for the uptake of small neutral molecules using NMR and MS experiments. Starting from benzene, cyclic guests were screened with respect to size (ring count), shape (flatness, 3D structure, substitution pattern, flexibility) and hetero atom content (number, position, donor character). 5-Rings and substituted 5/6-rings bind only weakly, while oversized (e.g. naphthalene, adamantane, ferrocene) and linear alkanes do not bind at all. Bridged 6-rings of the norbornane type and in particular DABCO bind strongly, likewise other guests with oppositely arranged hetero atoms. For the DABCO complex, a single crystal X-ray structure was obtained. The contribution of dispersive interactions to binding was derived from electronic structure calculations. Together, experimental and theoretical data deepen the understanding of guest selectivity and encapsulation driving force towards application of the host as a switchable receptor and reaction chamber.

14.
J Control Release ; 243: 283-290, 2016 12 10.
Article in English | MEDLINE | ID: mdl-27793684

ABSTRACT

Implantable devices for electronically triggered drug release are attractive to achieve spatial and temporal control over drug concentrations in patients. Realization of such devices is, however, associated with technical and biological challenges. Among these are containment of drug reservoirs, lack of precise control cues, as well as the charge and size of the drug. Here, we present a method for electronically triggered release of the quaternary ammonium cation acetylcholine (ACh) from an impregnated conductive polymer film. Using supercritical carbon dioxide (scCO2), a film of PEDOT/PSS (poly(3,4)-ethylenedioxythiophene doped with poly(styrenesulfonate)) is impregnated with the neurotransmitter acetylcholine. The gentle scCO2 process generated a dry, drug-impregnated surface, well suited for interaction with biological material, while maintaining normal electrochemical properties of the polymer. Electrochemical switching of impregnated PEDOT/PSS films stimulated release of ACh from the polymer matrix, likely due to swelling mediated by the influx and efflux of charged and solvated ions. Triggered release of ACh did not affect the biological activity of the drug. This was shown by real-time monitoring of intracellular Ca2+ signaling in neurotypic cells growing on the impregnated polymer surface. Collectively, scCO2 impregnation of conducting polymers offers the first one-step, dopant-independent drug impregnation process, potentially facilitating loading of both anionic and cationic drugs that can be dissolved in scCO2 on its own or by using a co-solvent. We foresee that scCO2-loaded devices for electronically triggered drug release will create novel opportunities when generating active bio-coatings, tunable for specific needs, in a variety of medical settings.


Subject(s)
Acetylcholine/administration & dosage , Carbon Dioxide/chemistry , Neuroblastoma/metabolism , Polymers/chemistry , Acetylcholine/chemistry , Acetylcholine/metabolism , Calcium Signaling , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Drug Liberation , Humans , Polystyrenes/chemistry , Solvents/chemistry , Thiophenes/chemistry
15.
Chem Sci ; 7(7): 4676-4684, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-30155116

ABSTRACT

Substituent control in self-assembled host systems allows for a fine-tuning of structure, dynamics and guest preference. Flat banana-shaped ligands L1 assemble with Pd(ii) cations into the interpenetrated coordination cage dimer [3BF4@Pd4L18], capable of sequential guest uptake. In contrast, the introduction of bulky adamantyl groups in ligand L2 prevents dimerization and results in the clean formation of monomeric cage species [Pd2L24]. Owing to steric crowding, the adamantyl substituent is considerably bent sideways with respect to the ligand backbone, and is rapidly flipping between both faces of the free ligand giving rise to two energetically degenerate conformers. Surprisingly, the flipping is preserved in the cage, albeit at a lower rate due to entropic reasons. Despite the very dense packing within the self-assembled structure, the cage is able to encapsulate a series of bis-anionic guests in an induced-fit fashion. Electronic structure calculations revealed a substantial contribution from dispersion interactions between the guest and the surrounding adamantyl groups that stabilize the host-guest complex. Guest exchange kinetics were quantified and the influence that encapsulated guests imparted on the ligand flipping dynamics was examined by a series of 2D NMR experiments. Four synchrotron X-ray structures of the cage and its host-guest complexes are presented, allowing for unprecedented insight into the host-guest interactions of a sterically overcrowded host and its guest-induced distortion.

16.
J Am Chem Soc ; 137(3): 1060-3, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25569812

ABSTRACT

Molecular encapsulation processes under the control of an external trigger play a major role in biological signal transduction processes and enzyme catalysis. Here, we present an artificial mimic of a controllable host system that forms via self-assembly from a simple bis-monodentate ligand and Pd(II) cations. The resulting interpenetrated double cage features three consecutive pockets which initially contain one tetrafluoroborate anion, each. Activation of this host system with two halide anions triggers a conformational change that renders the central pocket susceptible to the uptake of small neutral guest molecules. Thereby, the pentacationic cage expels the central anion and replaces it with a neutral molecule to give a hexacationic species. The cage structures prior and after the halide triggered binding of benzene were examined by X-ray crystallography, ESI MS, and NMR techniques. The kinetics and thermodynamics of the encapsulation of benzene, cyclohexane, and norbornadiene are compared.

17.
J Mater Chem B ; 3(25): 4979-4992, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-32262450

ABSTRACT

Organic bioelectronics is a rapidly growing field of both academic and industrial interest. Specific attributes make this class of materials particularly interesting for biomedical and medical applications, and a whole new class of biologically compatible devices is being created owing to structural and functional similarities to biological systems. In parallel, modern advances in biomedical research call for dynamically controllable systems. In infection biology, a progressing bacterial infection can be studied dynamically, at much higher resolution and on a smaller spatial scale than ever before, and it is now understood that minute changes in the tissue microenvironment play pivotal roles in the outcome of infections. This review merges the fields of infection biology and organic bioelectronics, describing the ability of conducting polymer devices to sense, modify, and interact with the infected tissue microenvironment. Though the primary focus is from the perspective of bacterial infections, general examples from cell biology and regenerative medicine are included where relevant. Spatially and temporally controlled biomimetic in vitro systems will greatly aid our molecular understanding of the infection process, thereby providing exciting opportunities for organic bioelectronics in future diagnosis and treatment of infectious diseases.

18.
Front Neuroeng ; 6: 6, 2013.
Article in English | MEDLINE | ID: mdl-23898266

ABSTRACT

A long term functional and reliable coupling between neural tissue and implanted microelectrodes is the key issue in acquiring neural electrophysiological signals or therapeutically excite neural tissue. The currently often used rigid micro-electrodes are thought to cause a severe foreign body reaction resulting in a thick glial scar and consequently a poor tissue-electrode coupling in the chronic phase. We hypothesize, that this adverse effect might be remedied by probes compliant to the soft brain tissue, i.e., replacing rigid electrodes by flexible ones. Unfortunately, this flexibility comes at the price of a low stiffness, which makes targeted low trauma implantation very challenging. In this study, we demonstrate an adaptable and simple method to implant extremely flexible microprobes even to deep areas of rat's brain. Implantation of flexible probes is achieved by rod supported stereotactic insertion fostered by a hydrogel (2% agarose in PBS) cushion on the exposed skull. We were thus able to implant very flexible micro-probes in 70 rats as deep as the rodent's subthalamic nucleus. This work describes in detail the procedures and steps needed for minimal invasive, but reliable implantation of flexible probes.

19.
Chemphyschem ; 14(6): 1168-76, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23436731

ABSTRACT

Two pyridylphenols with intramolecular hydrogen bonds between the phenol and pyridine units have been synthesized, characterized crystallographically, and investigated by cyclic voltammetry and UV/Vis spectroscopy. Reductive quenching of the triplet metal-to-ligand charge-transfer excited state of the [Re(CO)3(phen)(py)](+) complex (phen = 1,10-phenanthroline, py = pyridine) by the two pyridylphenols and two reference phenol molecules is investigated by steady-state and time-resolved luminescence spectroscopy, as well as by transient absorption spectroscopy. Stern-Volmer analysis of the luminescence quenching data provides rate constants for the bimolecular excited-state quenching reactions. H/D kinetic isotope effects for the pyridylphenols are on the order of 2.0, and the bimolecular quenching reactions are up to 100 times faster with the pyridylphenols than with the reference phenols. This observation is attributed to the markedly less positive oxidation potentials of the pyridylphenols with respect to the reference phenols (≈0.5 V), which in turn is caused by proton coupling of the phenol oxidation process. Transient absorption spectroscopy provides unambiguous evidence for the photogeneration of phenoxyl radicals, that is, the overall photoreaction is clearly a proton-coupled electron-transfer process.


Subject(s)
Coordination Complexes/chemistry , Phenols/chemistry , Pyridines/chemistry , Rhenium/chemistry , Crystallography, X-Ray , Electron Transport , Hydrogen Bonding , Molecular Conformation , Oxidation-Reduction , Phenanthrolines/chemistry , Spectrometry, Fluorescence
20.
Phys Med Biol ; 58(3): 555-68, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23318277

ABSTRACT

A well-established navigation method is one of the key conditions for successful brain surgery: it should be accurate, safe and online operable. Recent research shows that optical coherence tomography (OCT) is a potential solution for this application by providing a high resolution and small probe dimension. In this study a fiber-based spectral-domain OCT system utilizing a super-luminescent-diode with the center wavelength of 840 nm providing 14.5 µm axial resolution was used. A composite 125 µm diameter detecting probe with a gradient index (GRIN) fiber fused to a single mode fiber was employed. Signals were reconstructed into grayscale images by horizontally aligning A-scans from the same trajectory with different depths. The reconstructed images can display brain morphology along the entire trajectory. For scans of typical white matter, the signals showed a higher reflection of light intensity with lower penetration depth as well as a steeper attenuation rate compared to the scans typical for gray matter. Micro-structures such as axon bundles (70 µm) in the caudate nucleus are visible in the reconstructed images. This study explores the potential of OCT to be a navigation modality in brain surgery.


Subject(s)
Brain/cytology , Optical Fibers , Tomography, Optical Coherence/instrumentation , Animals , Brain/physiology , Brain/surgery , Electrophysiological Phenomena , Image Processing, Computer-Assisted , Lenses , Rats , Surgery, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...