Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712088

ABSTRACT

Tissue structure and molecular circuitry in the colon can be profoundly impacted by systemic age-related effects, but many of the underlying molecular cues remain unclear. Here, we built a cellular and spatial atlas of the colon across three anatomical regions and 11 age groups, encompassing ~1,500 mouse gut tissues profiled by spatial transcriptomics and ~400,000 single nucleus RNA-seq profiles. We developed a new computational framework, cSplotch, which learns a hierarchical Bayesian model of spatially resolved cellular expression associated with age, tissue region, and sex, by leveraging histological features to share information across tissue samples and data modalities. Using this model, we identified cellular and molecular gradients along the adult colonic tract and across the main crypt axis, and multicellular programs associated with aging in the large intestine. Our multi-modal framework for the investigation of cell and tissue organization can aid in the understanding of cellular roles in tissue-level pathology.

2.
Nat Biotechnol ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985876

ABSTRACT

Mucosal and barrier tissues, such as the gut, lung or skin, are composed of a complex network of cells and microbes forming a tight niche that prevents pathogen colonization and supports host-microbiome symbiosis. Characterizing these networks at high molecular and cellular resolution is crucial for understanding homeostasis and disease. Here we present spatial host-microbiome sequencing (SHM-seq), an all-sequencing-based approach that captures tissue histology, polyadenylated RNAs and bacterial 16S sequences directly from a tissue by modifying spatially barcoded glass surfaces to enable simultaneous capture of host transcripts and hypervariable regions of the 16S bacterial ribosomal RNA. We applied our approach to the mouse gut as a model system, used a deep learning approach for data mapping and detected spatial niches defined by cellular composition and microbial geography. We show that subpopulations of gut cells express specific gene programs in different microenvironments characteristic of regional commensal bacteria and impact host-bacteria interactions. SHM-seq should enhance the study of native host-microbe interactions in health and disease.

3.
Commun Biol ; 5(1): 129, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149753

ABSTRACT

The inflamed rheumatic joint is a highly heterogeneous and complex tissue with dynamic recruitment and expansion of multiple cell types that interact in multifaceted ways within a localized area. Rheumatoid arthritis synovium has primarily been studied either by immunostaining or by molecular profiling after tissue homogenization. Here, we use Spatial Transcriptomics, where tissue-resident RNA is spatially labeled in situ with barcodes in a transcriptome-wide fashion, to study local tissue interactions at the site of chronic synovial inflammation. We report comprehensive spatial RNA-Seq data coupled to cell type-specific localization patterns at and around organized structures of infiltrating leukocyte cells in the synovium. Combining morphological features and high-throughput spatially resolved transcriptomics may be able to provide higher statistical power and more insights into monitoring disease severity and treatment-specific responses in seropositive and seronegative rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Transcriptome , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Humans , Synovial Membrane/metabolism
4.
J Heart Lung Transplant ; 40(3): 210-219, 2021 03.
Article in English | MEDLINE | ID: mdl-33349521

ABSTRACT

BACKGROUND: Delayed gastric emptying has been associated with increased graft rejection, although the mechanism of this association is not known. This study aims to investigate the interrelationship between delays in gastrointestinal motility and the diversity and composition of gastric, oropharyngeal, and lung microbiomes in pediatric lung transplant recipients. METHODS: We prospectively recruited 23 pediatric lung transplant recipients and 98 pediatric patients with respiratory symptoms undergoing combined endoscopy and bronchoscopy. Gastric, oropharyngeal, and bronchoalveolar lavage samples were collected for 16S sequencing. Gastric samples were also analyzed for bile composition using liquid chromatography. RESULTS: Patients who underwent lung transplantation had significantly reduced alpha diversity in gastric and oropharyngeal sites compared with patients with respiratory symptoms. This reduction in alpha diversity was especially evident in gastric samples in patients with delayed gastric emptying defined as abnormal gastric emptying on nuclear scintigraphy or as an elevation in gastric bile concentration (p ≤ 0.05). Whereas monocolonies were seen in the lungs of patients who underwent transplantation, these were not the same microbes seen in the stomach; the microbial overlap between lung and gastric samples within patients was low, and data indicated high individual variation between lung transplant recipients. Other contributors to reduced alpha diversity included antibiotics in combination with proton pump inhibitors, especially in gastric and oropharyngeal samples. CONCLUSIONS: Lung transplant recipients have reduced microbial diversity in gastric fluid (GF) and oropharynx compared with patients who did not undergo lung transplantation. The decreased alpha diversity in GF may be associated with dysmotility.


Subject(s)
Deglutition Disorders/microbiology , Gastric Emptying/physiology , Gastrointestinal Tract/microbiology , Lung Transplantation , Microbiota , Respiratory System/microbiology , Transplant Recipients , Child, Preschool , Deglutition Disorders/physiopathology , Female , Follow-Up Studies , Gastrointestinal Motility/physiology , Humans , Male , Prospective Studies
5.
PLoS One ; 13(3): e0193928, 2018.
Article in English | MEDLINE | ID: mdl-29529047

ABSTRACT

The detection of recurrent somatic chromosomal rearrangements is standard of care for most leukemia types. Even though karyotype analysis-a low-resolution genome-wide chromosome analysis-is still the gold standard, it often needs to be complemented with other methods to increase resolution. To evaluate the feasibility and applicability of mate pair whole genome sequencing (MP-WGS) to detect structural chromosomal rearrangements in the diagnostic setting, we sequenced ten bone marrow samples from leukemia patients with recurrent rearrangements. Samples were selected based on cytogenetic and FISH results at leukemia diagnosis to include common rearrangements of prognostic relevance. Using MP-WGS and in-house bioinformatic analysis all sought rearrangements were successfully detected. In addition, unexpected complexity or additional, previously undetected rearrangements was unraveled in three samples. Finally, the MP-WGS analysis pinpointed the location of chromosome junctions at high resolution and we were able to identify the exact exons involved in the resulting fusion genes in all samples and the specific junction at the nucleotide level in half of the samples. The results show that our approach combines the screening character from karyotype analysis with the specificity and resolution of cytogenetic and molecular methods. As a result of the straightforward analysis and high-resolution detection of clinically relevant rearrangements, we conclude that MP-WGS is a feasible method for routine leukemia diagnostics of structural chromosomal rearrangements.


Subject(s)
Chromosome Aberrations , Leukemia/genetics , Whole Genome Sequencing/methods , Bone Marrow , Computational Biology , Early Detection of Cancer , Exons , Feasibility Studies , Humans , In Situ Hybridization, Fluorescence , Leukemia/pathology
6.
Eur Respir J ; 47(3): 898-909, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26585430

ABSTRACT

In pulmonary sarcoidosis, CD4(+) T-cells expressing T-cell receptor Vα2.3 accumulate in the lungs of HLA-DRB1*03(+) patients. To investigate T-cell receptor-HLA-DRB1*03 interactions underlying recognition of hitherto unknown antigens, we performed detailed analyses of T-cell receptor expression on bronchoalveolar lavage fluid CD4(+) T-cells from sarcoidosis patients.Pulmonary sarcoidosis patients (n=43) underwent bronchoscopy with bronchoalveolar lavage. T-cell receptor α and ß chains of CD4(+) T-cells were analysed by flow cytometry, DNA-sequenced, and three-dimensional molecular models of T-cell receptor-HLA-DRB1*03 complexes generated.Simultaneous expression of Vα2.3 with the Vß22 chain was identified in the lungs of all HLA-DRB1*03(+) patients. Accumulated Vα2.3/Vß22-expressing T-cells were highly clonal, with identical or near-identical Vα2.3 chain sequences and inter-patient similarities in Vß22 chain amino acid distribution. Molecular modelling revealed specific T-cell receptor-HLA-DRB1*03-peptide interactions, with a previously identified, sarcoidosis-associated vimentin peptide, (Vim)429-443 DSLPLVDTHSKRTLL, matching both the HLA peptide-binding cleft and distinct T-cell receptor features perfectly.We demonstrate, for the first time, the accumulation of large clonal populations of specific Vα2.3/Vß22 T-cell receptor-expressing CD4(+) T-cells in the lungs of HLA-DRB1*03(+) sarcoidosis patients. Several distinct contact points between Vα2.3/Vß22 receptors and HLA-DRB1*03 molecules suggest presentation of prototypic vimentin-derived peptides.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HLA-DRB1 Chains/metabolism , Receptors, Antigen, T-Cell/immunology , Sarcoidosis, Pulmonary/immunology , Adult , Bronchoalveolar Lavage Fluid , Bronchoscopy , Female , Flow Cytometry , Humans , Lung/immunology , Male , Middle Aged , Models, Molecular , Sweden
7.
Gigascience ; 4: 56, 2015.
Article in English | MEDLINE | ID: mdl-26617983

ABSTRACT

BACKGROUND: It remains a challenge to perform de novo assembly using next-generation sequencing (NGS). Despite the availability of multiple sequencing technologies and tools (e.g., assemblers) it is still difficult to assemble new genomes at chromosome resolution (i.e., one sequence per chromosome). Obtaining high quality draft assemblies is extremely important in the case of yeast genomes to better characterise major events in their evolutionary history. The aim of this work is two-fold: on the one hand we want to show how combining different and somewhat complementary technologies is key to improving assembly quality and correctness, and on the other hand we present a de novo assembly pipeline we believe to be beneficial to core facility bioinformaticians. To demonstrate both the effectiveness of combining technologies and the simplicity of the pipeline, here we present the results obtained using the Dekkera bruxellensis genome. METHODS: In this work we used short-read Illumina data and long-read PacBio data combined with the extreme long-range information from OpGen optical maps in the task of de novo genome assembly and finishing. Moreover, we developed NouGAT, a semi-automated pipeline for read-preprocessing, de novo assembly and assembly evaluation, which was instrumental for this work. RESULTS: We obtained a high quality draft assembly of a yeast genome, resolved on a chromosomal level. Furthermore, this assembly was corrected for mis-assembly errors as demonstrated by resolving a large collapsed repeat and by receiving higher scores by assembly evaluation tools. With the inclusion of PacBio data we were able to fill about 5 % of the optical mapped genome not covered by the Illumina data.


Subject(s)
Computational Biology/methods , Dekkera/genetics , Genome, Fungal , Chromosome Mapping/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Software
8.
Genome Biol ; 16: 156, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26313521

ABSTRACT

Although the locations of promoters and enhancers have been identified in several cell types, we still have limited information on their connectivity. We developed HiCap, which combines a 4-cutter restriction enzyme Hi-C with sequence capture of promoter regions. Applying the method to mouse embryonic stem cells, we identified promoter-anchored interactions involving 15,905 promoters and 71,984 distal regions. The distal regions were enriched for enhancer marks and transcription, and had a mean fragment size of only 699 bp--close to single-enhancer resolution. High-resolution maps of promoter-anchored interactions with HiCap will be important for detailed characterizations of chromatin interaction landscapes.


Subject(s)
Chromatin/chemistry , Enhancer Elements, Genetic , Genomics/methods , Promoter Regions, Genetic , Animals , Chromosome Mapping , Gene Expression , Gene Regulatory Networks , Mice , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...