Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Nat Commun ; 9(1): 1897, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765044

ABSTRACT

Complex-oxide materials exhibit physical properties that involve the interplay of charge and spin degrees of freedom. However, an ambipolar oxide that is able to exhibit both electron-doped and hole-doped ferromagnetism in the same material has proved elusive. Here we report ambipolar ferromagnetism in LaMnO3, with electron-hole asymmetry of the ferromagnetic order. Starting from an undoped atomically thin LaMnO3 film, we electrostatically dope the material with electrons or holes according to the polarity of a voltage applied across an ionic liquid gate. Magnetotransport characterization reveals that an increase of either electron-doping or hole-doping induced ferromagnetic order in this antiferromagnetic compound, and leads to an insulator-to-metal transition with colossal magnetoresistance showing electron-hole asymmetry. These findings are supported by density functional theory calculations, showing that strengthening of the inter-plane ferromagnetic exchange interaction is the origin of the ambipolar ferromagnetism. The result raises the prospect of exploiting ambipolar magnetic functionality in strongly correlated electron systems.

3.
Phys Rev Lett ; 119(15): 156801, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29077457

ABSTRACT

Emergent phenomena at polar-nonpolar oxide interfaces have been studied intensely in pursuit of next-generation oxide electronics and spintronics. Here we report the disentanglement of critical thicknesses for electron reconstruction and the emergence of ferromagnetism in polar-mismatched LaMnO_{3}/SrTiO_{3} (001) heterostructures. Using a combination of element-specific x-ray absorption spectroscopy and dichroism, and first-principles calculations, interfacial electron accumulation, and ferromagnetism have been observed within the polar, antiferromagnetic insulator LaMnO_{3}. Our results show that the critical thickness for the onset of electron accumulation is as thin as 2 unit cells (UC), significantly thinner than the observed critical thickness for ferromagnetism of 5 UC. The absence of ferromagnetism below 5 UC is likely induced by electron overaccumulation. In turn, by controlling the doping of the LaMnO_{3}, we are able to neutralize the excessive electrons from the polar mismatch in ultrathin LaMnO_{3} films and thus enable ferromagnetism in films as thin as 3 UC, extending the limits of our ability to synthesize and tailor emergent phenomena at interfaces and demonstrating manipulation of the electronic and magnetic structures of materials at the shortest length scales.

4.
Zhonghua Yi Xue Za Zhi ; 97(22): 1724-1728, 2017 Jun 13.
Article in Chinese | MEDLINE | ID: mdl-28606282

ABSTRACT

Objective: To investigate risk factors of rupture of internal carotid artery resection during carotid body tumor resection and to summarize our treatment experience. Methods: During the period from 1991 to 2016, rupture of internal carotid artery occurred in 27 patients (28 tumors) during surgical resection of carotid body tumor in the First Affiliated Hospital of Sun Yat-sen University. Their clinical and follow-up data were retrospectively collected and analyzed. For all patients underwent surgical resection during this period, Logistic regression analysis was used to investigate the risk factors of intraoperative rupture of internal carotid artery. Results: Of these 28 tumors, there were 15 (53.6%) tumors with diameter≥5 cm and 20 (71.4%) Shamblin Ⅲ tumors. Intraoperatively, shunt was applied for 8 (28.6%) cases. Thirteen (46.4%) patients underwent ligation of external carotid artery, while 2 (7.1%) patients accepted resection of cranial nerves. Direct closure/patchplasty, autologous vessels or graft reconstruction was used in 16, 10 and 2 cases, respectively. Postoperatively, stroke occurred in 4(14.3%) cases and cranial nerve deficit in 15 (53.6%) cases. During a median length of 36 (14-125) months, cranial nerve deficit persisted in 5 cases. Follow-up radiologic examination indicated 3 (10.7%) cases of targeted vessel occlusion. However, no new-onset stroke was identified. Among all patients underwent surgical resection of carotid body tumor, female (OR=3.650, P=0.012), age≤25 years old (OR=3.710, P=0.013) and Shamblin Ⅲ tumor (OR=4.631, P=0.008) increase the risks of intraoperative carotid artery rupture. Conclusions: Shamblin Ⅲ tumor is the predictor of rupture of internal carotid artery. Intraoperative, properly increased blood pressure, intraoperative heparinization and use of shunt for those cases without well-compensated cranial collateral arteries are likely to decreasing the incidence of stroke.


Subject(s)
Carotid Artery, Internal/pathology , Carotid Body Tumor/surgery , Carotid Artery, Internal/surgery , Female , Humans , Incidence , Risk Factors , Rupture , Treatment Outcome
5.
Nat Commun ; 7: 11015, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26980456

ABSTRACT

Magnetic interactions in solids are normally mediated by short-range exchange or weak dipole fields. Here we report a magnetic interaction that can propagate over long distances (∼10 nm) across a polar insulating oxide spacer. Evidence includes oscillations of magnetization, coercivity and field-cooled loop shift with the thickness of LaAlO3 in La0.67Sr0.33MnO3/LaAlO3/SrTiO3 heterostructures. Similar modifications of the hysteresis loop appear when two coupled films of La0.67Sr0.33MnO3 are separated by LaAlO3, or another polar insulator, but they are absent when the oxide spacer layer is nonpolar. The loop shift is attributed to strong spin-orbit coupling and Dzyaloshinskii-Moriya interaction at the interfaces. There is evidence from inelastic light scattering that the polar spacer mediates long-range transmission of orbital magnetization. This coupling mechanism is expected to apply for any conducting ferromagnetic oxide with mixed valence; in view of electron hopping frequency involved, it raises the prospect of terahertz tunability of magnetic coupling.

6.
Sci Rep ; 5: 18282, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26669575

ABSTRACT

We show here a new phenomenon in La0.5Sr0.5TiO3/SrTiO3 (LSTO/STO) heterostructures; that is a coexistence of three-dimensional electron liquid (3DEL) and 2D electron gas (2DEG), separated by an intervening insulating LSTO layer. The two types of carriers were revealed through multi-channel analysis of the evolution of nonlinear Hall effect as a function of film thickness, temperature and back gate voltage. We demonstrate that the 3D electron originates from La doping in LSTO film and the 2D electron at the surface of STO is due to the polar field in the intervening insulating layer. As the film thickness is reduced below a critical thickness of 6 unit cells (uc), an abrupt metal-to-insulator transition (MIT) occurs without an intermediate semiconducting state. The properties of the LSTO layer grown on different substrates suggest that the insulating phase of the intervening layer is a result of interface strain induced by the lattice mismatch between the film and substrate. Further, by fitting the magnetoresistance (MR) curves, the 6 unit cell thick LSTO is shown to exhibit spin-orbital coupling. These observations point to new functionalities, in addition to magnetism and superconductivity in STO-based systems, which could be exploited in a multifunctional context.

7.
Science ; 349(6249): 716-9, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26273050

ABSTRACT

Oxide heterostructures often exhibit unusual physical properties that are absent in the constituent bulk materials. Here, we report an atomically sharp transition to a ferromagnetic phase when polar antiferromagnetic LaMnO3 (001) films are grown on SrTiO3 substrates. For a thickness of six unit cells or more, the LaMnO3 film abruptly becomes ferromagnetic over its entire area, which is visualized by scanning superconducting quantum interference device microscopy. The transition is explained in terms of electronic reconstruction originating from the polar nature of the LaMnO3 (001) films. Our results demonstrate that functionalities can be engineered in oxide films that are only a few atomic layers thick.

8.
Sci Rep ; 5: 13011, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26265554

ABSTRACT

We report the observation of spatially separated Kondo scattering and ferromagnetism in anatase Ta0.06Ti0.94O2 thin films as a function of thickness (10-200 nm). The Kondo behavior observed in thicker films is suppressed on decreasing thickness and vanishes below ~25 nm. In 200 nm film, transport data could be fitted to a renormalization group theory for Kondo scattering though the carrier density in this system is lower by two orders of magnitude, the magnetic entity concentration is larger by a similar magnitude and there is strong electronic correlation compared to a conventional system such as Cu with magnetic impurities. However, ferromagnetism is observed at all thicknesses with magnetic moment per unit thickness decreasing beyond 10 nm film thickness. The simultaneous presence of Kondo and ferromagnetism is explained by the spatial variation of defects from the interface to surface which results in a dominantly ferromagnetic region closer to substrate-film interface while the Kondo scattering is dominant near the surface and decreasing towards the interface. This material system enables us to study the effect of neighboring presence of two competing magnetic phenomena and the possibility for tuning them.

9.
Nat Commun ; 4: 1838, 2013.
Article in English | MEDLINE | ID: mdl-23673623

ABSTRACT

The observation of a high-mobility two-dimensional electron gas between two insulating complex oxides, especially LaAlO3/SrTiO3, has enhanced the potential of oxides for electronics. The occurrence of this conductivity is believed to be driven by polarization discontinuity, leading to an electronic reconstruction. In this scenario, the crystal orientation has an important role and no conductivity would be expected, for example, for the interface between LaAlO3 and (110)-oriented SrTiO3, which should not have a polarization discontinuity. Here we report the observation of unexpected conductivity at the LaAlO3/SrTiO3 interface prepared on (110)-oriented SrTiO3, with a LaAlO3-layer thickness-dependent metal-insulator transition. Density functional theory calculation reveals that electronic reconstruction, and thus conductivity, is still possible at this (110) interface by considering the energetically favourable (110) interface structure, that is, buckled TiO2/LaO, in which the polarization discontinuity is still present. The conductivity was further found to be strongly anisotropic along the different crystallographic directions with potential for anisotropic superconductivity and magnetism, leading to possible new physics and applications.

10.
Phys Rev Lett ; 107(14): 146802, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-22112172

ABSTRACT

We report optical, electrical and magnetotransport properties of oxygen deficient SrTiO(3) (SrTiO(3-x)) thin films fabricated by pulsed laser deposition technique. The oxygen vacancies (O(vac)) in the thin film are expected to be uniform. By comparing its electrical properties to those of bulk SrTiO(3-x), it was found that O(vac) in bulk SrTiO(3-x) is far from uniform over the whole material. The metal-insulator transition (MIT) observed in the SrTiO(3-x) film was found to be induced by the carrier freeze-out effect. The low temperature frozen state can be reexcited by Joule heating, electric and intriguingly magnetic field.

11.
Article in Chinese | MEDLINE | ID: mdl-11393949

ABSTRACT

OBJECTIVE: To investigate the clinical effects of revascularization in lower extremity for severe ischemia. METHODS: Fifty-six lower limbs with severe ischemia in 49 patients were evaluated retrospectively, who underwent surgical intervention from January of 1995 to December of 2000. By arteriography, the actual anatomic distributions of occlusive disease included infrarenal aorta-bicommon iliac arteries, abdominal aorta-bicommon iliac arteries, iliac artery, and femoral artery or femoropopliteal artery. The indication for surgery was disabling claudication, rest pain and gangrene. Fourteen limbs in 12 cases received arterialization of femoral venous system by artificial venous-arterial fistula. Artificial vascular grafts were implanted in 33 limbs of 28 cases, endarterectomy and patch profundaplasty were performed in 5 limbs of 5 cases, and primary amputation was carried out in 4 cases. RESULTS: During 38 months follow-up in average, 4 limbs were amputated within 52 revascularizated limbs, and accumulated amputation rate was 14.3%. Patency rate was 68.4% in arterial revascularization limbs (26/38 limbs), and limb survival rate was 94.7%(36/38 limbs) by procedure of artificial vascular grafts, endarterectomy and patch profundaplasty. Limb survival rate in procedure of artificial venous-arterial fistula was 85.7%(12/14 limbs). CONCLUSION: In treatment of severe lower extremity ischemia, the effective revascularization can be achieved by artificial vascular bypass, endarterectomy and patch profundaplasty, or arterialization of femoral venous system. Options in the surgical management should depend on individual. Arteriography is essential for revascularization and properly planning a practicable surgical approach.


Subject(s)
Arterial Occlusive Diseases/surgery , Ischemia/surgery , Leg/blood supply , Vascular Surgical Procedures , Adult , Aged , Arteries/surgery , Arteriosclerosis/surgery , Blood Vessel Prosthesis , Female , Humans , Male , Middle Aged
12.
J Chromatogr A ; 855(1): 341-7, 1999 Sep 03.
Article in English | MEDLINE | ID: mdl-10514999

ABSTRACT

The reduced products of 2,3-butanedinone monoxime by reaction with hydrogen in the presence of homogeneous catalysts were identified by gas chromatography coupled to an ion trap mass spectrometer operating either in the electron impact or chemical ionization mode. The major hydrogenation products were found to be several heterocyclic nitrogen-containing compounds: tetramethylpyrazine, 2,4-dimethyl-3-ethylpyrrole, 3,4,5-trimethylpyrazole, 2,5-dimethyl-1-propylpyrrole, 3-acetyl-2,4-dimethylpyrrole, 3,5-dimethyl-4-allypyrazole and tetramethylpyrazine N-monoxide.


Subject(s)
Diacetyl/analogs & derivatives , Gas Chromatography-Mass Spectrometry/methods , Hydrogen/chemistry , Diacetyl/chemistry
13.
Biochem Genet ; 28(7-8): 399-413, 1990 Aug.
Article in English | MEDLINE | ID: mdl-1980061

ABSTRACT

Using human alpha glycophorin cDNA probe and six restriction enzymes, we examined the homologues of human glycophorin genes in genomic DNA of 11 unrelated chimpanzees. We show that, in contrast to the human, the chimpanzee exhibits an unusual array of nonrandomly distributed restriction fragment length polymorphisms (RFLP). No clear correlation was found between the RFLP and the V-A-B-D blood-group phenotypes of the subjects, with one possible exception. However, pairs of allelic RFLP occurring at a relatively high frequency were identified. In addition, the homology of chimpanzee glycophorin genes to the human genes was examined using as probes synthetic oligonucleotides specifying distinct regions of human glycophorin genes. We show that the glycophorin gene family in the chimpanzee consists of at least three members that are homologous to the human alpha, delta, and E genes (glycophorins A, B, and E) and may share a similar gross structure and overall organization.


Subject(s)
Alleles , Glycophorins/genetics , Multigene Family , Pan troglodytes/genetics , Polymorphism, Restriction Fragment Length , Animals , Base Sequence , Gene Frequency , Humans , Molecular Sequence Data , Restriction Mapping , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...