Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 10(21): 6438-6445, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31573816

ABSTRACT

The electronic and geometric structures of tetracene films on Ag(110) and Cu(110) have been studied with photoemission tomography and compared to that of pentacene. Despite similar energy level alignment of the two oligoacenes on these surfaces revealed by conventional ultraviolet photoelectron spectroscopy, the momentum-space resolved photoemission tomography reveals a significant difference in both structural and electronic properties of tetracene and pentacene films. Particularly, the saturated monolayer of tetracene on Ag(110) is found to consist of two molecular species that, despite having the same orientation, are electronically very different-while one molecule remains neutral, another is charged because of electron donation from the substrate.

2.
Nat Commun ; 10(1): 3189, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31320632

ABSTRACT

The determination of reaction pathways and the identification of reaction intermediates are key issues in chemistry. Surface reactions are particularly challenging, since many methods of analytical chemistry are inapplicable at surfaces. Recently, atomic force microscopy has been employed to identify surface reaction intermediates. While providing an excellent insight into the molecular backbone structure, atomic force microscopy is less conclusive about the molecular periphery, where adsorbates tend to react with the substrate. Here we show that photoemission tomography is extremely sensitive to the character of the frontier orbitals. Specifically, hydrogen abstraction at the molecular periphery is easily detected, and the precise nature of the reaction intermediates can be determined. This is illustrated with the thermally induced reaction of dibromo-bianthracene to graphene which is shown to proceed via a fully hydrogenated bisanthene intermediate. We anticipate that photoemission tomography will become a powerful companion to other techniques in the study of surface reaction pathways.

3.
Chem Commun (Camb) ; 54(95): 13423-13426, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30427327

ABSTRACT

Metal-containing enzyme cofactors achieve their unusual reactivity by stabilizing uncommon metal oxidation states with structurally complex ligands. In particular, the specific cofactor promoting both methanogenesis and anaerobic methane oxidation is a porphyrinoid chelated to a nickel(i) atom via a multi-step biosynthetic path, where nickel reduction is achieved through extensive molecular hydrogenation. Here, we demonstrate an alternative route to porphyrin reduction by charge transfer from a selected copper substrate to commercially available 5,10,15,20-tetraphenyl-porphyrin nickel(ii). X-ray absorption measurements at the Ni L3-edge unequivocally show that NiTPP species adsorbed on Cu(100) are stabilized in the highly reactive Ni(i) oxidation state by electron transfer to the molecular orbitals. Our approach highlights how some fundamental properties of synthetically inaccessible biological cofactors may be reproduced by hybridization of simple metalloporphyrins with metal surfaces, with implications towards novel approaches to heterogenous catalysis.


Subject(s)
Coenzymes/metabolism , Metalloporphyrins/metabolism , Adsorption , Catalysis , Coenzymes/chemistry , Copper/chemistry , Metalloporphyrins/chemistry , Molecular Structure , Particle Size , Surface Properties
4.
Chem Commun (Camb) ; 54(65): 9039-9042, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30047957

ABSTRACT

We report a method to achieve physical and electronic decoupling of organic molecules from a metal surface. Oxygen adsorbed on the Cu(100) surface immobilizes the surface electrons in the Cu-O covalent bonds. This results in electronic surface hardening and prevents charge transfer from the metal into perylene-tetracarboxylic dianhydride molecules subsequently deposited on this surface.

5.
J Phys Chem C Nanomater Interfaces ; 122(11): 6475-6482, 2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29623149

ABSTRACT

We present a combined experimental and theoretical study of electronic and optical properties of dihydro-tetraaza-acenes (DHTAn). Using solvent-free condensation, we are able to synthesize not only DHTA5 but also the longer DHTA6 and DHTA7 molecules. We then investigate their gas-phase electronic structures by means of ab initio density functional calculations employing an optimally tuned range-separated hybrid functional. By comparing with the parent linear oligoacenes (nA) and based on computed ionization potentials and electron affinities, we predict DHTAn molecules to be more stable than acenes of the same length, where we expect DHTAn molecules to be persistent at least up to n = 7 rings. We further exploit the analogy with nA by analyzing the entire intramolecular π-band structure of the DHTAn molecules. This clearly reveals that the additional two electrons donated by the dihydropyrazine group are delocalized over the entire molecule and contribute to its π-electron system. As a consequence, the symmetry of the frontier orbitals of DHTAn differs from that of the parent nA molecule. This also affects the UV-vis absorption spectra which have been measured for DHTA5, 6, and 7 dissolved in dimethyl sulfoxide and analyzed by means of excited state calculations within a time-dependent density functional theory framework.

6.
Nat Commun ; 8(1): 1949, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29192138

ABSTRACT

The original version of this Article contained an error in the spelling of the author Claus Michael Schneider, which was incorrectly given as Claus Michael Schneidery. This has now been corrected in both the PDF and HTML versions of the Article.

7.
Nat Commun ; 8(1): 335, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28839127

ABSTRACT

The molecule-substrate interaction plays a key role in charge injection organic-based devices. Charge transfer at molecule-metal interfaces strongly affects the overall physical and magnetic properties of the system, and ultimately the device performance. Here, we report theoretical and experimental evidence of a pronounced charge transfer involving nickel tetraphenyl porphyrin molecules adsorbed on Cu(100). The exceptional charge transfer leads to filling of the higher unoccupied orbitals up to LUMO+3. As a consequence of this strong interaction with the substrate, the porphyrin's macrocycle sits very close to the surface, forcing the phenyl ligands to bend upwards. Due to this adsorption configuration, scanning tunneling microscopy cannot reliably probe the states related to the macrocycle. We demonstrate that photoemission tomography can instead access the Ni-TPP macrocycle electronic states and determine the reordering and filling of the LUMOs upon adsorption, thereby confirming the remarkable charge transfer predicted by density functional theory calculations.Charge transfer at molecule-metal interfaces affects the overall physical and magnetic properties of organic-based devices, and ultimately their performance. Here, the authors report evidence of a pronounced charge transfer involving nickel tetraphenyl porphyrin molecules adsorbed on copper.

8.
J Phys Chem C Nanomater Interfaces ; 121(22): 12285-12293, 2017 Jun 08.
Article in English | MEDLINE | ID: mdl-28620448

ABSTRACT

Angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) was measured for one-monolayer coronene films deposited on Ag(111). The (kx ,ky )-dependent photoelectron momentum maps (PMMs), which were extracted from the ARUPS data by cuts at fixed binding energies, show finely structured patterns for the highest and the second-highest occupied molecular orbitals. While the substructure of the PMM main features is related to the 4 × 4 commensurate film structure, various features with three-fold symmetry imply an additional influence of the substrate. PMM simulations on the basis of both free-standing coronene assemblies and coronene monolayers on the Ag(111) substrate confirm a sizable molecule-molecule interaction because no substructure was observed for PMM simulations using free coronene molecules.

10.
ACS Nano ; 11(6): 6252-6260, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28541656

ABSTRACT

It is becoming accepted that ultrathin dielectric layers on metals are not merely passive decoupling layers, but can actively influence orbital energy level alignment and charge transfer at interfaces. As such, they can be important in applications ranging from catalysis to organic electronics. However, the details at the molecular level are still under debate. In this study, we present a comprehensive analysis of the phenomenon of charge transfer promoted by a dielectric interlayer with a comparative study of pentacene adsorbed on Ag(001) with and without an ultrathin MgO interlayer. Using scanning tunneling microscopy and photoemission tomography supported by density functional theory, we are able to identify the orbitals involved and quantify the degree of charge transfer in both cases. Fractional charge transfer occurs for pentacene adsorbed on Ag(001), while the presence of the ultrathin MgO interlayer promotes integer charge transfer with the lowest unoccupied molecular orbital transforming into a singly occupied and singly unoccupied state separated by a large gap around the Fermi energy. Our experimental approach allows a direct access to the individual factors governing the energy level alignment and charge-transfer processes for molecular adsorbates on inorganic substrates.

11.
Sci Rep ; 6: 38519, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929042

ABSTRACT

This study focuses on hexagonal boron nitride as an ultra-thin van der Waals dielectric substrate for the epitaxial growth of highly ordered crystalline networks of the organic semiconductor parahexaphenyl. Atomic force microscopy based morphology analysis combined with density functional theory simulations reveal their epitaxial relation. As a consequence, needle-like crystallites of parahexaphenyl grow with their long axes oriented five degrees off the hexagonal boron nitride zigzag directions. In addition, by tuning the deposition temperature and the thickness of hexagonal boron nitride, ordered networks of needle-like crystallites as long as several tens of micrometers can be obtained. A deeper understanding of the organic crystallites growth and ordering at ultra-thin van der Waals dielectric substrates will lead to grain boundary-free organic field effect devices, limited only by the intrinsic properties of the organic semiconductors.

12.
J Electron Spectros Relat Phenomena ; 204(Pt A): 92-101, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26752804

ABSTRACT

The frontier orbitals of molecules are the prime determinants of their chemical, optical and electronic properties. Arguably, the most direct method of addressing the (filled) frontier orbitals is ultra-violet photoemission spectroscopy (UPS). Although UPS is a mature technique from the early 1970s on, the angular distribution of the photoemitted electrons was thought to be too complex to be analysed quantitatively. Recently angle resolved UPS (ARUPS) work on conjugated molecules both, in ordered thick films and chemisorbed monolayers, has shown that the angular (momentum) distribution of the photocurrent from orbital emissions can be simply understood. The approach, based on the assumption of a plane wave final state is becoming known as orbital tomography. Here we will demonstrate, with selected examples of pentacene (5A) and sexiphenyl (6P), the potential of orbital tomography. First it will be shown how the full angular distribution of the photocurrent (momentum map) from a specific orbital is related to the real space orbital by a Fourier transform. Examples of the reconstruction of 5A orbitals will be given and the procedure for recovering the lost phase information will be outlined. We then move to examples of sexiphenyl where we interrogate the original band maps of thick sexiphenyl in the light of our understanding of orbital tomography that has developed since then. With comparison to theoretical simulations of the molecular band maps, the molecular conformation and orientation will be concluded. New results for the sexiphenyl monolayer on Al(1 1 0) will then be presented. From the band maps it will be concluded that the molecule is planarised and adopts a tilted geometry. Finally the momentum maps down to HOMO-11 will be analysed and real space orbitals reconstructed.

13.
J Electron Spectros Relat Phenomena ; 195: 293-300, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25284953

ABSTRACT

Here we report on a combined experimental and theoretical study on the structural and electronic properties of a monolayer of Copper-Phthalocyanine (CuPc) on the Au(1 1 0) surface. Low-energy electron diffraction reveals a commensurate overlayer unit cell containing one adsorbate species. The azimuthal alignment of the CuPc molecule is revealed by comparing experimental constant binding energy (kxky )-maps using angle-resolved photoelectron spectroscopy with theoretical momentum maps of the free molecule's highest occupied molecular orbital (HOMO). This structural information is confirmed by total energy calculations within the framework of van-der-Waals corrected density functional theory. The electronic structure is further analyzed by computing the molecule-projected density of states, using both a semi-local and a hybrid exchange-correlation functional. In agreement with experiment, the HOMO is located about 1.2 eV below the Fermi-level, while there is no significant charge transfer into the molecule and the CuPc LUMO remains unoccupied on the Au(1 1 0) surface.

14.
Nat Commun ; 5: 3685, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24739211

ABSTRACT

Although geometric and electronic properties of any physical or chemical system are always mutually coupled by the rules of quantum mechanics, counterintuitive coincidences between the two are sometimes observed. The coadsorption of the organic molecules 3,4,9,10-perylene tetracarboxylic dianhydride and copper-II-phthalocyanine on Ag(111) represents such a case, since geometric and electronic structures appear to be decoupled: one molecule moves away from the substrate while its electronic structure indicates a stronger chemical interaction, and vice versa for the other. Our comprehensive experimental and ab-initio theoretical study reveals that, mediated by the metal surface, both species mutually amplify their charge-donating and -accepting characters, respectively. This resolves the apparent paradox, and demonstrates with exceptional clarity how geometric and electronic bonding parameters are intertwined at metal-organic interfaces.


Subject(s)
Anhydrides/chemistry , Copper/chemistry , Models, Chemical , Organometallic Compounds/chemistry , Perylene/analogs & derivatives , Silver/chemistry , Adsorption , Perylene/chemistry , Quantum Theory
15.
Proc Natl Acad Sci U S A ; 111(2): 605-10, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24344291

ABSTRACT

The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust.


Subject(s)
Electrons , Models, Theoretical , Quantum Theory , Naphthacenes/chemistry , Perylene/chemistry , Photoelectron Spectroscopy , Silver/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...