Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 515
Filter
1.
Article in English | MEDLINE | ID: mdl-39266250

ABSTRACT

Excessive reactive oxygen species (ROS) is a hallmark of both the onset and progression of inflammatory bowel disease (IBD), where a continuous cycle of ROS and inflammation drives the progression of diseases. The design of oral antioxidant nanoenzymes for scavenging ROS has emerged as a promising strategy to intervene in IBD. However, the practical application of these nanoenzymes is limited due to their single catalytical property and significantly impacted by substantial leakage in the upper gastrointestinal tract. This study introduces a novel oral delivery system, SP@CS-SeNPs, combining natural microalgae Spirulina platensis (SP), which possesses superoxide dismutase (SOD)-like activity, with chitosan-functionalized selenium nanoparticles (CS-SeNPs) that exhibit catalase-like activity. The SP@CS-SeNPs system leverages the dual catalytic capabilities of these components to initiate a cascade reaction that first converts superoxide anion radicals (O2•-) into hydrogen peroxide (H2O2), and then catalyzes the decomposition of H2O2 into water and oxygen. This system not only utilizes the resistance of the microalgae carrier to gastric acid and its efficient capture by intestinal villi, thereby enhancing intestinal distribution and retention but also demonstrates significant anti-inflammatory effects and effective repair of the damaged intestinal barrier in a colitis mice model. These results demonstrate that this oral delivery system successfully combines the features of microalgae and nanozymes, exhibits excellent biocompatibility, and offers a novel approach for antioxidant nanozyme intervention in IBD.

2.
Redox Rep ; 29(1): 2398380, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39284588

ABSTRACT

Purpose: To investigate the renal pathophysiological processes and protective effect of quercetin on contrast-induced acute kidney injury (CI-AKI) in mice with type 1 diabetic mellitus(DM) using diffusion tensor imaging(DTI).Methods: Mice with DM were divided into two groups. In the diabetic + contrast medium(DCA) group, the changes of the mice kidneys were monitored at 1, 24, 48, and 72 h after the injection of iodixanol(4gI/kg). The mice in the diabetic + contrast medium + quercetin(DCA + QE) group were orally given different concentrations of quercetin for seven days before injection of iodixanol. In vitro experiments, renal tubular epithelial (HK-2) cells exposed to high glucose conditions were treated with various quercetin concentrations before treatment with iodixanol(250 mgI/mL).Results: DTI-derived mean diffusivity(MD) and fractional anisotropy(FA) values can be used to evaluate CI-AKI effectively. Quercetin significantly increased the expression of Sirt 1 and reduced oxidative stress by increasing Nrf 2/HO-1/SOD1. The antiapoptotic effect of quercetin on CI-AKI was revealed by decreasing proteins level and by reducing the number of apoptosis-positive cells. In addition, flow cytometry indicated quercetin-mediated inhibition of M1 macrophage polarization in the CI-AKI.Conclusions: DTI will be an effective noninvasive tool in diagnosing CI-AKI. Quercetin attenuates CI-AKI on the basis of DM through anti-oxidative stress, apoptosis, and inflammation.


Subject(s)
Acute Kidney Injury , Contrast Media , Diabetes Mellitus, Type 1 , Diffusion Tensor Imaging , Quercetin , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Mice , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/diagnostic imaging , Contrast Media/adverse effects , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/complications , Male , Oxidative Stress/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Kidney/drug effects , Apoptosis/drug effects , Triiodobenzoic Acids
3.
Environ Pollut ; 362: 124932, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39260543

ABSTRACT

Bisphenols constitute a diverse group of endocrine-disrupting chemicals (EDCs) that impact hormone activity. Bisphenol F (BPF) is commonly used as a substitute for Bisphenol A (BPA). The disruption of the immune system by EDCs during embryonic brain development has been suggested as a plausible factor to neurodevelopmental disorders. We investigated the neurotoxic effects of perinatal exposure to BPF on offspring mice. Female mice were exposed to BPF through their drinking water on day 0.5 of pregnancy, and this exposure continued until the offspring mice were weaned, throughout the perinatal period. Our findings revealed that exposure to BPF hindered both growth and neurodevelopment in offspring mice, with a more pronounced effect observed in males. Additionally, transcriptomic analysis was conducted on the brains of male offspring mice exposed to high doses of BPF. In summary, our study indicates that perinatal exposure to BPF results in neurodevelopmental impairments in male offspring mice, linked to oxidative stress, inflammatory responses, and immune dysregulation. These findings underscore that BPF may not be a safe substitute for BPA. Thus, there is a pressing need to reevaluate the current regulation of BPF.

4.
Basic Res Cardiol ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158697

ABSTRACT

Exercise is an effective way to alleviate breast cancer-induced cardiac injury to a certain extent. However, whether voluntary exercise (VE) activates cardiac signal transducer and activator of transcription 3 (STAT3) and the underlying mechanisms remain unclear. This study investigated the role of STAT3-microRNA(miRNA)-targeted protein axis in VE against breast cancer-induced cardiac injury.VE for 4 weeks not only improved cardiac function of transgenic breast cancer female mice [mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT +)] compared with littermate mice with no cancer (MMTV-PyMT -), but also increased myocardial STAT3 tyrosine 705 phosphorylation. Significantly more obvious cardiac fibrosis, smaller cardiomyocyte size, lower cell viability, and higher serum tumor necrosis factor (TNF)-α were shown in MMTV-PyMT + mice compared with MMTV-PyMT - mice, which were ameliorated by VE. However, VE did not influence the tumor growth. MiRNA sequencing identified that miR-181a-5p was upregulated and miR-130b-3p was downregulated in VE induced-cardioprotection. Myocardial injection of Adeno-associated virus serotype 9 driving STAT3 tyrosine 705 mutations abolished cardioprotective effects above. Myocardial STAT3 was identified as the transcription factor binding the promoters of pri-miR-181a (the precursor of miR-181a-5p) and HOX transcript antisense RNA (HOTAIR, sponged miR-130b-3p) in isolated cardiomyocytes. Furthermore, miR-181a-5p targeting PTEN and miR-130b-3p targeting Zinc finger and BTB domain containing protein 20 (Zbtb20) were proved in AC-16 cells. These findings indicated that VE protects against breast cancer-induced cardiac injury via activating STAT3 to promote miR-181a-5p targeting PTEN and to promote HOTAIR to sponge miR-130b-3p targeting Zbtb20, helping to develop new targets in exercise therapy for breast cancer-induced cardiac injury.

5.
Chemistry ; : e202402716, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167361

ABSTRACT

Dithiocarbamate is a key structural sequence in pharmaceuticals and agrochemicals, and its synthesis is crucial in organic chemistry. Although significant progress has been made in related synthesis research, developing a practical and universal synthesis method remains fascinating. Herein, we report a new visible-light-induced decarboxylation coupling reaction between N-hydroxyphthalimide esters and tetraalkylthiuram disulfides, which uses Ir(ppy)3 as a photocatalyst to promote the generation of corresponding decarboxylation thioacylation product-dithiocarbamates in high yields. This redox-neutral protocol uses inexpensive and readily available starting material under mild reaction conditions, exhibiting broad substrate scope and wide functional group compatibility. This method can be further used for post modification of complex natural products and bioactive drugs.

6.
Environ Pollut ; 361: 124800, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39178933

ABSTRACT

Epidemiologic studies suggest that prenatal exposure to bisphenols may increase the risk of respiratory disease in children. Bisphenol F (BPF), a member of the bisphenol family, is widely used in industrial production. However, the potential pulmonary toxic effects and mechanisms of BPF exposure on offspring remain unclear. In this study, maternal mice were exposed to 0, 40, 400, and 4000 µg/kg BPF during gestation and lactation. The results showed that an inflammatory response was observed in lungs of BPF-exposed female offspring mice, characterized by peribronchial inflammatory cell infiltration and an increase in the number of inflammatory cells in BALF. Subsequent transcriptome analysis identified a total of 685 differentially expressed genes (DEGs) were in lungs of female offspring mice exposed to high-dose BPF, with 526 upregulated genes and 159 downregulated genes. Among upregulated DEGs of top 10, most of the upregulated genes were associated with inflammatory responses. In addition, enrichment analysis showed that immunosuppression and oxidative damage were significantly enriched in lungs of female offspring mice, suggesting that BPF could induce immunosuppression and oxidative stress in lungs of female offspring mice. Overall, our findings provide mechanistic insights into the potential pulmonary toxicity associated with BPF exposure during gestation and lactation.

7.
Support Care Cancer ; 32(9): 603, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167153

ABSTRACT

PURPOSE: This umbrella review aimed to identify, critically appraise, and synthesize current evidence from systematic reviews and meta-analyses on the applications of virtual reality-based supportive care interventions in cancer. METHODS: Three bibliographic databases were searched from inception to February 1, 2024. Two independent reviewers screened the titles and abstracts of 421 records and retrieved 26 full-text systematic reviews. Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR-2) was used for quality assessment. Qualitative syntheses were performed to investigate the effects of virtual reality-based supportive care interventions on quality of life and physical, psychological, cognitive, and functional outcomes. Meta-analysis was performed based on data from the distinct primary studies that were extracted from the included reviews. RESULTS: This umbrella review included 20 systematic reviews that were published between 2018 and 2023; nine of them conducted meta-analyses. A total of 86 distinct primary studies were identified. According to the AMSTAR-2 assessment, two reviews were evaluated as moderate quality, nine as low, and nine as critically low. Meta-analyses of primary studies revealed significant effects of virtual reality on anxiety (p < 0.001), depression (p < 0.001), and pain (p < 0.001), but not fatigue (p = 0.263). Qualitative syntheses revealed positive effects of virtual reality on physical function, cognitive function, and quality of life. Limited evidence was reported regarding outcomes of balance, gait, mobility, and activities of daily living. CONCLUSION: Virtual reality has proven to be a safe and feasible approach to deliver supportive care in cancer. Virtual reality can be implemented in various stages and settings of the cancer care continuum to support patients undergoing painful procedures, during or after chemotherapy, and after surgical interventions. Virtual reality can serve as an effective supportive care intervention to manage anxiety, pain, and depression for patients with cancer.


Subject(s)
Neoplasms , Quality of Life , Systematic Reviews as Topic , Virtual Reality , Humans , Neoplasms/therapy , Neoplasms/psychology , Meta-Analysis as Topic
8.
Ecol Evol ; 14(7): e11563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39026951

ABSTRACT

The Bambusoideae subfamily, originating in the late Cretaceous, has evolved to include over 1500 species globally. Notably, China hosts the richest diversity of Bambusoideae, with 728 species documented. After a long period of coevolution, plenty of animals could feed on these plants rich in cellulose and lignin. As an important group of pests and participants in the ecosystem, bamboo-feeding true bugs (BFTBs, or bamboo-feeding Heteropteran insects) have attracted the attention of researchers. However, the diversity and distribution of BFTBs still lack systematic and generalized research. In this study, we reviewed the BFTBs in China and simulated the diversity pattern and the driving forces of this pattern. A list of 36 genera with 69 species of BFTBs in China was obtained through paper review and field surveys. And their bamboo-feeding habit had multiple independent origins. The spatial diversity pattern showed that the biodiversity hotspots of BFTBs are located in and around the tropics of southern China. Environmental driving force analysis showed that the minimum temperature of coldest month and annual precipitation were the dominant environmental factors shaping the spatial diversity of BFTBs. Our work quantified the diversity and distribution of BFTBs in China, providing fundamental data support for pest control and evolutionary research.

9.
Amino Acids ; 56(1): 47, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060524

ABSTRACT

sulfur-containing amino acids have been reported to patriciate in gene regulation, DNA methylation, protein synthesis and other physiological or pathological processes. In recent years, metabolism-related molecules of sulfur-containing amino acids affecting the occurrence, development and treatment of tumors have been implicated in various disorders, especially in leukemia. Here, we summarize current knowledge on the sulfur-containing amino acid metabolism pathway in leukemia and examine ongoing efforts to target this pathway, including treatment strategies targeting (a) sulfur-containing amino acids, (b) metabolites of sulfur-containing amino acids, and (c) enzymes and cofactors related to sulfur-containing amino acid metabolism in leukemia. Future leukemia therapy will likely involve innovative strategies targeting the sulfur-containing amino acid metabolism pathway.


Subject(s)
Leukemia , Humans , Leukemia/metabolism , Leukemia/drug therapy , Leukemia/genetics , Sulfur/metabolism , Animals , Amino Acids/metabolism , Amino Acids, Sulfur/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
10.
Eye (Lond) ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068250

ABSTRACT

OBJECTIVES: Considering the escalating incidence of strabismus and its consequential jeopardy to binocular vision, there is an imperative demand for expeditious and precise screening methods. This study was to develop an artificial intelligence (AI) platform in the form of an applet that facilitates the screening and management of strabismus on any mobile device. METHODS: The Visual Transformer (VIT_16_224) was developed using primary gaze photos from two datasets covering different ages. The AI model was evaluated by 5-fold cross-validation set and tested on an independent test set. The diagnostic performance of the AI model was assessed by calculating the Accuracy, Precision, Specificity, Sensitivity, F1-Score and Area Under the Curve (AUC). RESULTS: A total of 6194 photos with corneal light-reflection (with 2938 Exotropia, 1415 Esotropia, 739 Vertical Deviation and 1562 Orthotropy) were included. In the internal validation set, the AI model achieved an Accuracy of 0.980, Precision of 0.941, Specificity of 0.979, Sensitivity of 0.958, F1-Score of 0.951 and AUC of 0.994. In the independent test set, the AI model achieved an Accuracy of 0.967, Precision of 0.980, Specificity of 0.970, Sensitivity of 0.960, F1-Score of 0.975 and AUC of 0.993. CONCLUSIONS: Our study presents an advanced AI model for strabismus screening which integrates electronic archives for comprehensive patient histories. Additionally, it includes a patient-physician interaction module for streamlined communication. This innovative platform offers a complete solution for strabismus care, from screening to long-term follow-up, advancing ophthalmology through AI technology for improved patient outcomes and eye care quality.

11.
Biomater Sci ; 12(16): 4226-4241, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38984522

ABSTRACT

Objectives: The technique of guided bone regeneration (GBR) has been widely used in the field of reconstructive dentistry to address hard tissue deficiency. The objective of this research was to manufacture a novel bi-layered asymmetric membrane that incorporates demineralized dentin matrix (DDM), a bioactive bone replacement derived from dentin, in order to achieve both soft tissue isolation and hard tissue regeneration simultaneously. Methods: DDM particles were harvested from healthy, caries-free permanent teeth. The electrospinning technique was utilized to synthesize bi-layered DDM-loaded PLGA/PLA (DPP) membranes. We analyzed the DPP bilayer membranes' surface topography, physicochemical properties and degradation ability. Rat skull critical size defects (CSDs) were constructed to investigate in vivo bone regeneration. Results: The synthesized DPP bilayer membranes possessed suitable surface characteristics, acceptable mechanical properties, good hydrophilicity, favorable apatite forming ability and suitable degradability. Micro-computed tomography (CT) showed significantly more new bone formation in the rat skull defects implanted with the DPP bilayer membranes. Histological evaluation further revealed that the bone was more mature with denser bone trabeculae. In addition, the DPP bilayer membrane significantly promoted the expression of the OCN matrix protein in vivo. Conclusions: The DPP bilayer membranes exhibited remarkable biological safety and osteogenic activity in vivo and showed potential as a prospective candidate for GBR applications in the future.


Subject(s)
Bone Regeneration , Dentin , Skull , Animals , Bone Regeneration/drug effects , Skull/injuries , Skull/pathology , Skull/diagnostic imaging , Skull/drug effects , Rats , Dentin/chemistry , Rats, Sprague-Dawley , Membranes, Artificial , Male , Wound Healing/drug effects , X-Ray Microtomography , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tissue Scaffolds/chemistry , Osteogenesis/drug effects
12.
Cell Prolif ; : e13705, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992867

ABSTRACT

Memory inflation is confirmed as the most commonly dysregulation of host immunity with antigen-independent manner in mammals after viral infection. By generating large numbers of effector/memory and terminal differentiated effector memory CD8+ T cells with diminished naïve subsets, memory inflation is believed to play critical roles in connecting the viral infection and the onset of multiple diseases. Here, we reviewed the current understanding of memory inflated CD8+ T cells in their distinct phenotypic features that different from exhausted subsets; the intrinsic and extrinsic roles in regulating the formation of memory inflation; and the key proteins in maintaining the expansion and proliferation of inflationary populations. More importantly, based on the evidences from both clinic and animal models, we summarized the potential mechanisms of memory inflation to trigger autoimmune neuropathies, such as Guillain-Barré syndrome and multiple sclerosis; the correlations of memory inflation between tumorigenesis and resistance of tumour immunotherapies; as well as the effects of memory inflation to facilitate vascular disease progression. To sum up, better understanding of memory inflation could provide us an opportunity to beyond the acute phase of viral infection, and shed a light on the long-term influences of CD8+ T cell heterogeneity in dampen host immune homeostasis.

13.
J Diabetes Metab Disord ; 23(1): 417-425, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932876

ABSTRACT

Purpose: This systematic review aims to identify, critically appraise, and synthesize the effects of virtual reality on balance in people with diabetes. Methods: Five biomedical databases were searched from inception to December 15, 2023. Clinical trials investigating the effects of virtual reality on performance-based or patient-reported outcome measures related to balance function among people with diabetes were included. Two independent reviewers conducted study selection, data extraction, and quality assessment. Cochrane risk-of-bias tool-2 were used to assess included studies. Meta-analysis was performed to examine the effects of the intervention. Results: Six studies with a total of 257 participants were identified. Two studies had high risk of bias, and four studies had some concerns regarding risk of bias. No adverse events related to virtual reality were reported. Meta-analysis revealed significant improvements in the Berg Balance Scale (SMD = 1.56, 95% CI 0.71 to 2.40, p < 0.001), Timed Up and Go test (SMD = -0.74, 95% CI -1.21 to -0.28, p = 0.002), and falls efficacy (SMD = 0.99, 95% CI 0.43 to 1.54, p < 0.001) following virtual reality intervention. No significant differences were found for postural sway and single leg stance measures. Conclusion: Virtual reality-based rehabilitation demonstrates promising effects for improving balance in people with diabetes. Further studies with high methodological quality and large sample sizes are warranted. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-024-01413-7.

14.
J Mech Behav Biomed Mater ; 157: 106606, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38838542

ABSTRACT

Trimagnesium phosphate (TMP) bioceramic scaffolds are deemed as promising bone grafts, but their mechanical and biological properties are yet to be improved. In the study, strontium orthosilicate (SrOS) was used to modify the TMP scaffolds, whose macroporous structure was constructed by the filament deposition-type 3D printing method. The new phases of SrMg2(PO4)2 and Sr2MgSi2O7, which showed nanocrystalline topography, were produced in the 3D-printed TMP/SrOS bioceramic composite scaffolds. The compressive strength (1.8-64.1 MPa) and porosity (39.7%-71.4%) of the TMP/SrOS scaffolds could be readily tailored by changing the amounts of SrOS additives and the sintering temperature. The TMP/SrOS scaffolds gradually degraded in the aqueous solution, consequently releasing ions of magnesium, strontium and silicon. In contrast with the TMP scaffolds, the TMP/SrOS bioceramic scaffolds had profoundly higher compressive strength, and enhanced cell proliferative and osteogenic activities. The TMP/SrOS scaffolds incorporated with 5 wt% SrOS had the highest mechanical strength and beneficial cellular function, which made them promising for treating different sites of bone defects.


Subject(s)
Ceramics , Mechanical Phenomena , Printing, Three-Dimensional , Strontium , Tissue Scaffolds , Tissue Scaffolds/chemistry , Strontium/chemistry , Ceramics/chemistry , Materials Testing , Porosity , Compressive Strength , Cell Proliferation/drug effects , Silicates/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Osteogenesis/drug effects , Animals , Phosphates/chemistry , Magnesium Compounds/chemistry , Mice
15.
Article in English | MEDLINE | ID: mdl-38871183

ABSTRACT

BACKGROUND: Inhalable biologics represent a promising approach to improve the efficacy and safety of asthma treatment. Although several mAbs targeting IL-4 receptor α chain (IL-4Rα) have been approved or are undergoing clinical trials, the development of inhalable mAbs targeting IL-4Rα presents significant challenges. OBJECTIVE: Capitalizing on the distinctive advantages of nanobodies (Nbs) in maintaining efficacy during storage and administration, we sought to develop a novel inhalable IL-4Rα Nb for effectively treating asthma. METHODS: Three IL-4Rα immunized Nb libraries were used to generate specific and functional IL-4Rα Nbs. LQ036, a bivalent Nb comprising 2 HuNb103 units, was constructed with a high affinity and specificity for human IL-4Rα. The efficacy, pharmacokinetics, and safety of inhaled LQ036 were evaluated in B-hIL4/hIL4RA humanized mice. RESULTS: LQ036 inhibited secreted embryonic alkaline phosphatase reporter activity, inhibited TF-1 cell proliferation, and suppressed phosphorylated signal transducer and activator of transduction 6 in T cells from patients with asthma. Crystal structure analysis revealed a binding region similar to dupilumab but with higher affinity, leading to better efficacy in blocking the signaling pathway. HuNb103 competed with IL-4 and IL-13 for IL-4Rα binding. Additionally, LQ036 significantly inhibited ovalbumin-specific IgE levels in serum, CCL17 levels in bronchoalveolar lavage fluid, bronchial mucous cell hyperplasia, and airway goblet cell hyperplasia in B-hIL4/hIL4RA humanized mice. Inhaled LQ036 exhibited favorable pharmacokinetics, safety, and tissue distribution, with higher concentrations observed in the lungs and bronchi. CONCLUSIONS: These findings from preclinical studies establish the safety and efficacy of inhaled LQ036, underscoring its potential as a pioneering inhalable biologic therapy for asthma.

16.
Mol Phylogenet Evol ; 198: 108121, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38851309

ABSTRACT

The subgenus Aeschyntelus includes six species that show variations in body color and shape, thus making it difficult to identify them based on morphological identification alone. To date, no genetic study has evaluated species within this genus. Herein, we collected 171 individuals from 90 localities of Rhopalus and employed an integrative taxonomic approach that incorporated morphological data, mitochondrial genomic data (COI, whole mitochondrial data) and nuclear genomic data (18S + 28S rRNAs, nuclear genome-wide SNPs) to delineate species boundaries. Our analyses confirmed the status of nine described species of Rhopalus and proposed the recognition of one new species known as Rhopalus qinlinganus sp. nov., which is classified within the subgenus Aeschyntelus. Discrepancies arising from nuclear and mitochondrial data suggest the presence of mito-nuclear discordance. Specifically, mitochondrial data indicated admixture within Clade A, comprising R. kerzhneri and R. latus, whereas genome-wide SNPs unambiguously identified two separate species, aligning with morphological classification. Conversely, mitochondrial data clearly distinguished Clade B- consisting of R. sapporensis into two lineages, whereas genome-wide SNPs unequivocally identified a single species. Our study also provides insights into the evolutionary history of Aeschyntelus, thus indicating that it likely originated in East Asia during the middle Miocene. The development of Aeschyntelus biodiversity in the southwestern mountains of China occurred via an uplift-driven diversification process. Our findings highlight the necessity of integrating both morphological and multiple molecular datasets for precise species identification, particularly when delineating closely related species. Additionally, it reveals the important role of mountain orogenesis on speciation within the southwestern mountains of China.


Subject(s)
Heteroptera , Phylogeny , Phylogeography , Animals , Heteroptera/genetics , Heteroptera/classification , Heteroptera/anatomy & histology , DNA, Mitochondrial/genetics , Cell Nucleus/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , China
18.
Plant Commun ; : 101010, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918950

ABSTRACT

A genome-wide association study (GWAS) identifies trait-associated loci, but identifying the causal genes can be a bottleneck, due in part to slow decay of linkage disequilibrium (LD). A transcriptome-wide association study (TWAS) addresses this issue by identifying gene expression-phenotype associations or integrating gene expression quantitative trait loci with GWAS results. Here, we used self-pollinated soybean (Glycine max [L.] Merr.) as a model to evaluate the application of TWAS to the genetic dissection of traits in plant species with slow LD decay. We generated RNA sequencing data for a soybean diversity panel and identified the genetic expression regulation of 29 286 soybean genes. Different TWAS solutions were less affected by LD and were robust to the source of expression, identifing known genes related to traits from different tissues and developmental stages. The novel pod-color gene L2 was identified via TWAS and functionally validated by genome editing. By introducing a new exon proportion feature, we significantly improved the detection of expression variations that resulted from structural variations and alternative splicing. As a result, the genes identified through our TWAS approach exhibited a diverse range of causal variations, including SNPs, insertions or deletions, gene fusion, copy number variations, and alternative splicing. Using this approach, we identified genes associated with flowering time, including both previously known genes and novel genes that had not previously been linked to this trait, providing insights complementary to those from GWAS. In summary, this study supports the application of TWAS for candidate gene identification in species with low rates of LD decay.

19.
Nat Nanotechnol ; 19(9): 1386-1398, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38898135

ABSTRACT

The buildup of plaques in atherosclerosis leads to cardiovascular events, with chronic unresolved inflammation and overproduction of reactive oxygen species (ROS) being major drivers of plaque progression. Nanotherapeutics that can resolve inflammation and scavenge ROS have the potential to treat atherosclerosis. Here we demonstrate the potential of black phosphorus nanosheets (BPNSs) as a therapeutic agent for the treatment of atherosclerosis. BPNSs can effectively scavenge a broad spectrum of ROS and suppress atherosclerosis-associated pro-inflammatory cytokine production in lesional macrophages. We also demonstrate ROS-responsive, targeted-peptide-modified BPNS-based carriers for the delivery of resolvin D1 (an inflammation-resolving lipid mediator) to lesional macrophages, which further boosts the anti-atherosclerotic efficacy. The targeted nanotherapeutics not only reduce plaque areas but also substantially improve plaque stability in high-fat-diet-fed apolipoprotein E-deficient mice. This study presents a therapeutic strategy against atherosclerosis, and highlights the potential of BPNS-based therapeutics to treat other inflammatory diseases.


Subject(s)
Antioxidants , Atherosclerosis , Docosahexaenoic Acids , Macrophages , Nanostructures , Phosphorus , Reactive Oxygen Species , Animals , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/pathology , Phosphorus/chemistry , Mice , Macrophages/drug effects , Macrophages/metabolism , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/chemistry , Docosahexaenoic Acids/administration & dosage , Reactive Oxygen Species/metabolism , Nanostructures/chemistry , Antioxidants/pharmacology , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Humans , Male , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , RAW 264.7 Cells , Apolipoproteins E/genetics
20.
Ital J Pediatr ; 50(1): 113, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853280

ABSTRACT

The purpose of this study was to review the literature on the clinical use of voriconazole (VRC) in pediatric patients. MEDLINE, Embase, PubMed, Web of Science, and Cochrane Library were searched from January 1, 2000, to August 15, 2023 for relevant clinical studies on VRC use in pediatric patients. Data were collected based on inclusion and exclusion criteria, and a systematic review was performed on recent research related to the use of VRC in pediatric patients. This systematic review included a total of 35 observational studies among which there were 16 studies investigating factors influencing VRC plasma trough concentrations (Ctrough) in pediatric patients, 14 studies exploring VRC maintenance doses required to achieve target range of Ctrough, and 11 studies focusing on population pharmacokinetic (PPK) research of VRC in pediatric patients. Our study found that the Ctrough of VRC were influenced by both genetic and non-genetic factors. The optimal dosing of VRC was correlated with age in pediatric patients, and younger children usually required higher VRC doses to achieve target Ctrough compared to older children. Establishing a PPK model for VRC can assist in achieving more precise individualized dosing in children.


Subject(s)
Antifungal Agents , Voriconazole , Voriconazole/administration & dosage , Humans , Antifungal Agents/administration & dosage , Child , Dose-Response Relationship, Drug , Mycoses/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL