Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4457, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796451

ABSTRACT

Coating building envelopes with a passive daytime radiative cooling (PDRC) material has attracted enormous attention as an alternative cooling technique with minimal energy consumption and carbon footprint. Despite the exceptional performance and scalability of porous polymer coating (PPC), achieving consistent performance over a wide range of drying environments remains a major challenge for its commercialization as a radiative cooling paint. Herein, we demonstrate the humidity vulnerability of PPC during the drying process and propose a simple strategy to greatly mitigate the issue. Specifically, we find that the solar reflectance of the PPC rapidly decreases with increasing humidity from 30% RH, and the PPC completely losses its PDRC ability at 45% RH and even become a solar-heating material at higher humidity. However, by adding a small amount of polymer reinforcement to the PPC, it maintains its PDRC performance up to 60% RH, resulting in a 950% increase in estimated areal coverage compared to PPC in the United States. This study sheds light on a crucial consistency issue that has thus far been rarely addressed, and offers engineering guidance to handle this fundamental threat to the development of dependable PDRC paint for industrial applications.

2.
RSC Adv ; 11(21): 12748-12756, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-35423792

ABSTRACT

Waterborne polyurethane-acrylate (WPUA) is a promising eco-friendly material for adhesives and coatings such as paints and inks on substrates including fibers, leather, paper, rubber, and wood. Recently, WPUA and its composites have been studied to overcome severe problems such as poor water resistance, mechanical properties, chemical resistance, and thermal stability. In this study, composite films consisting of WPUA and rod-type boron nitride nanotubes (BNNTs), which have excellent intrinsic properties including high mechanical strength and chemical stability, were investigated. Specifically, BNNT/WPUA composite films were synthesized by mixing aqueous solutions of BNNT and WPUA via facile mechanical agitation without any organic solvents or additives, and the optimal content of BNNTs was determined. For the 2.5 wt% BNNT/WPUA composite, the BNNTs were found to be well distributed in the WPUA matrix and this material showed the overall best performance in terms of water resistance, thermal conductivity, and corrosion resistance. Owing to these advantageous properties and their environmentally friendly nature, BNNT/WPUA composite coating materials are expected to be applicable in a wide variety of industries.

3.
Acc Chem Res ; 53(3): 620-631, 2020 03 17.
Article in English | MEDLINE | ID: mdl-31920073

ABSTRACT

Block copolymers (BCPs) have been indispensable building blocks to create a range of soft nanostructures including discrete particulates (micelles and vesicles) and periodic structures via spontaneous assembly in bulk and in solution. The size, shape, and phase of these structures can be controlled by the rational design of the molecular structure of building blocks based on the structural analogy of BCPs to lipids and small molecule surfactants. Inverse bicontinuous cubic mesophases of polymers, or polymer cubosomes when in colloidal forms, are emerging nanostructures composed of triply periodic minimal surfaces (TPMSs) of block copolymer bilayers. Created by spontaneous assembly of BCPs in solution, polymer cubosomes internalize two nonintersecting nanochannel networks arranged in a cubic crystalline order. As well-defined porous particles with highly ordered internal structures and high surface-area-to-volume ratios, polymer cubosomes can be used for chemical reactors or bioreactors, carriers capable of cargo loading and release, and scaffolds for nanotemplating. However, despite their structural similarity to lipid cubosomes and applicability, polymer cubosomes have been only sporadically observed as an outcome of serendipity until recent studies demonstrated that BCPs could form well-defined polymer cubosomes in solution.In this Account, we describe our recent progress in creating polymer cubic mesophases and their colloidal particles (polymer cubosomes) in dilute solution. BCPs with nonlinear architectures (dendritic-linear, branched-linear, and branched-branched BCPs) preferentially self-assembled to inverse mesophases in solution when the block ratio (f), defined as a molecular weight ratio of the hydrophilic block to that of the hydrophobic block, was small (<10%). The resulting lyotropic structures transformed from flat bilayers to cubic phases of primitive cubic and double diamond lattices and finally to inverted hexagonal phases as f decreased. We proposed that the architecture of a BCP plays an important role in the preferential formation of polymer cubosomes in solution. The presence of the bulky hydrophilic block limited chain stretching of the hydrophobic polymer block, which would increase the packing parameter of the BCP to greater than unity, a prerequisite for inverse mesophase formation. The structural characteristics of polymer cubosomes, such as lattice symmetries, pore sizes, and lattice parameters, could also be controlled by fine-tuning the structural parameters of BCPs. We also suggested nonsynthetic methods to precisely control the phase and internal lattice of inverse mesophases of BCPs by the coassembly of two BCPs with different block ratios (mix-and-match approach) and the modulation of the affinity of the common solvent toward the hydrophobic block of the BCP. To investigate the potential applications of polymer cubosomes, we prepared inorganic photonic crystals using a cubosome-templated synthesis. We also discussed the utilization of cubosomes as chemical reactors by functionalization of the surface and the covalent stabilization of transient self-assembled structures via cross-linking of the hydrophobic domain. This Account reflects the efforts of synthetic chemists to understand the self-assembly behavior of BCPs to form complex morphologies in solution. We hope that our Account inspires efforts from chemists and other scientists to further understand these structures with infinite mazes of complexity and possibility.

4.
Nat Commun ; 9(1): 5327, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30552324

ABSTRACT

The synthesis of biophotonic crystals of insects, cubic crystalline single networks of chitin having large open-space lattices, requires the selective diffusion of monomers into only one of two non-intersecting water-channel networks embedded within the template, ordered smooth endoplasmic reticulum (OSER). Here we show that the topology of the circumferential bilayer of polymer cubosomes (PCs)-polymeric analogues to lipid cubic membranes and complex biological membranes-differentiate between two non-intersecting pore networks embedded in the cubic mesophase by sealing one network at the interface. Consequently, single networks having large lattice parameters (>240 nm) are synthesized by cross-linking of inorganic precursors within the open network of the PCs. Our results pave the way to create triply periodic structures of open-space lattices as photonic crystals and metamaterials without relying on complex multi-step fabrication. Our results also suggest a possible answer for how biophotonic single cubic networks are created, using OSER as templates.

5.
Angew Chem Int Ed Engl ; 54(36): 10483-7, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26212227

ABSTRACT

We report here a strategy for influencing the phase and lattice of the inverse mesophases of a single branched-linear block copolymer (BCP) in solution which does not require changing the structure of the BCP. The phase of the self-assembled structures of the block copolymer can be controlled ranging from bilayer structures of positive curvature (polymersomes) to inverse mesophases (triply periodic minimal surfaces and inverse hexagonal structures) by adjusting the solvent used for self-assembly. By using solvent mixtures to dissolve the block copolymer we were able to systematically change the affinity of the solvent toward the polystyrene block, which resulted in the formation of inverse mesophases with the desired lattice by self-assembly of a single branched-linear block copolymer. Our method was also applied to a new solution self-assembly method for a branched-linear block copolymer on a stationary substrate under humidity, which resulted in the formation of large mesoporous films. Our results constitute the first controlled transition of the inverse mesophases of block copolymers by adjusting the solvent composition.

6.
Nat Commun ; 6: 6392, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25740100

ABSTRACT

Solution self-assembly of block copolymers into inverse bicontinuous cubic mesophases is a promising new approach for creating porous polymer films and monoliths with highly organized bicontinuous mesoporous networks. Here we report the direct self-assembly of block copolymers with branched hydrophilic blocks into large monoliths consisting of the inverse bicontinuous cubic structures of the block copolymer bilayer. We suggest a facile and scalable method of solution self-assembly by diffusion of water to the block copolymer solution, which results in the unperturbed formation of mesoporous monoliths with large-pore (>25 nm diameter) networks weaved in crystalline lattices. The surface functional groups of the internal large-pore networks are freely accessible for large guest molecules such as protein complexes of which the molecular weight exceeded 100 kDa. The internal double-diamond (Pn3m) networks of large pores within the mesoporous monoliths could be replicated to self-supporting three-dimensional skeletal structures of crystalline titania and mesoporous silica.

7.
ACS Nano ; 9(3): 3084-96, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25731603

ABSTRACT

Solution self-assembly of amphiphilic block copolymers into inverse bicontinuous cubic mesophases is an emerging strategy for directly creating highly ordered triply periodic porous polymer nanostructures with large pore networks and desired surface functionalities. Although there have been recent reports on the formation of highly ordered triply periodic minimal surfaces of self-assembled block copolymer bilayers, the structural requirements for block copolymers in order to facilitate the preferential formation of such inverse mesophases in solution have not been fully investigated. In this study, we synthesized a series of model block copolymers, namely, branched poly(ethylene glycol)-block-polystyrene (bPEG-PS), to investigate the effect of the architecture of the block copolymers on their solution self-assembly into inverse mesophases consisting of the block copolymer bilayer. On the basis of the results, we suggest that the branched architecture of the hydrophilic block is a crucial structural requirement for the preferential self-assembly of the resulting block copolymers into inverse bicontinuous cubic phases. The internal crystalline lattice of the inverse bicontinuous cubic structure can be controlled via coassembly of branched and linear block copolymers. The results presented here provide design criteria for amphiphilic block copolymers to allow the formation of inverse bicontinuous cubic mesophases in solution. This may contribute to the direct synthesis of well-defined porous polymers with desired crystalline order in the porous networks and surface functionalities.

8.
Nat Chem ; 6(6): 534-41, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24848240

ABSTRACT

Analogous to the complex membranes found in cellular organelles, such as the endoplasmic reticulum, the inverse cubic mesophases of lipids and their colloidal forms (cubosomes) possess internal networks of water channels arranged in crystalline order, which provide a unique nanospace for membrane-protein crystallization and guest encapsulation. Polymeric analogues of cubosomes formed by the direct self-assembly of block copolymers in solution could provide new polymeric mesoporous materials with a three-dimensionally organized internal maze of large water channels. Here we report the self-assembly of amphiphilic dendritic-linear block copolymers into polymer cubosomes in aqueous solution. The presence of precisely defined bulky dendritic blocks drives the block copolymers to form spontaneously highly curved bilayers in aqueous solution. This results in the formation of colloidal inverse bicontinuous cubic mesophases. The internal networks of water channels provide a high surface area with tunable surface functional groups that can serve as anchoring points for large guests such as proteins and enzymes.


Subject(s)
Macromolecular Substances/chemistry , Membranes, Artificial , Polymers/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Structure , Surface Properties , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL