Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Waste Manag ; 73: 62-68, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29242115

ABSTRACT

This paper proposes the use of factorial experimental design as a standard experimental method in the application of froth flotation to plastic separation instead of the commonly used OVAT method (manipulation of one variable at a time). Furthermore, as is common practice in minerals flotation, the parameters of the kinetic model were used as process responses rather than the recovery of plastics in the separation products. To explain and illustrate the proposed methodology, a set of 32 experimental tests was performed using mixtures of two polymers with approximately the same density, PVC and PS (with mineral charges), with particle size ranging from 2 to 4 mm. The manipulated variables were frother concentration, air flow rate and pH. A three-level full factorial design was conducted. The models establishing the relationships between the manipulated variables and their interactions with the responses (first order kinetic model parameters) were built. The Corrected Akaike Information Criterion was used to select the best fit model and an analysis of variance (ANOVA) was conducted to identify the statistically significant terms of the model. It was shown that froth flotation can be used to efficiently separate PVC from PS with mineral charges by reducing the floatability of PVC, which largely depends on the action of pH. Within the tested interval, this is the factor that most affects the flotation rate constants. The results obtained show that the pure error may be of the same magnitude as the sum of squares of the errors, suggesting that there is significant variability within the same experimental conditions. Thus, special care is needed when evaluating and generalizing the process.


Subject(s)
Plastics , Refuse Disposal , Particle Size , Polymers , Recycling , Research Design
2.
Waste Manag ; 66: 13-22, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28479086

ABSTRACT

The separation of plastic wastes in mechanical recycling plants is the process that ensures high-quality secondary raw materials. An innovative device employing a wet technology for particle separation is presented in this work. Due to the combination of the characteristic flow pattern developing within the apparatus and density, shape and size differences among two or more polymers, it allows their separation into two products, one collected within the instrument and the other one expelled through its outlet ducts. The kinematic investigation of the fluid flowing within the apparatus seeded with a passive tracer was conducted via image analysis for different hydraulic configurations. The two-dimensional turbulent kinetic energy results strictly connected to the apparatus separation efficacy. Image analysis was also employed to study the behaviour of mixtures of passive tracer and plastic particles with different physical characteristics in order to understand the coupling regime between fluid and solid phases. The two-dimensional turbulent kinetic energy analysis turned out to be fundamental to this aim. For the tested operating conditions, two-way coupling takes place, i.e., the fluid exerts an influence on the plastic particle and the opposite occurs too. Image analysis confirms the outcomes from the investigation of the two-phase flow via non-dimensional numbers (particle Reynolds number, Stokes number and solid phase volume fraction).


Subject(s)
Plastics , Recycling , Polymers , Refuse Disposal
3.
Waste Manag ; 54: 39-43, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27256781

ABSTRACT

Froth flotation is a promising technique to separate polymers of similar density. The present paper shows the need for performing kinetic tests to evaluate and optimize the process. In the experimental study, batch flotation tests were performed on samples of ABS and PS. The floated product was collected at increasing flotation time. Two variables were selected for modification: the concentration of the depressor (tannic acid) and airflow rate. The former is associated with the chemistry of the process and the latter with the transport of particles. It was shown that, like mineral flotation, plastics flotation can be adequately assumed as a first order rate process. The results of the kinetic tests showed that the kinetic parameters change with the operating conditions. When the depressing action is weak and the airflow rate is low, the kinetic is fast. Otherwise, the kinetic is slow and a variable percentage of the plastics never floats. Concomitantly, the time at which the maximum difference in the recovery of the plastics in the floated product is attained changes with the operating conditions. The prediction of flotation results, process evaluation and comparisons should be done considering the process kinetics.


Subject(s)
Plastics , Recycling/methods , Refuse Disposal/methods , Kinetics , Polymers , Recycling/statistics & numerical data , Refuse Disposal/statistics & numerical data
4.
Waste Manag ; 54: 143-52, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27184448

ABSTRACT

Pyrolysis seems a promising route for recycling of heterogeneous, contaminated and additives containing plastics from waste electrical and electronic equipment (WEEE). This study deals with the thermal and catalytic pyrolysis of a synthetic mixture containing real waste plastics, representative of polymers contained in small WEEE. Two zeolite-based catalysts were used at 400°C: HUSY and HZSM-5 with a high silica content, while three different temperatures were adopted for the thermal cracking: 400, 600 and 800°C. The mass balance showed that the oil produced by pyrolysis is always the main product regardless the process conditions selected, with yields ranging from 83% to 93%. A higher yield was obtained when pyrolysis was carried out with HZSM-5 at 400°C and without catalysts, but at 600 and 800°C. Formation of a significant amount of solid residue (about 13%) is observed using HUSY. The oily liquid product of pyrolysis, analysed by GC-MS and GC-FID, as well as by elemental analysis and for energy content, appeared lighter, less viscous and with a higher concentration of monoaromatics under catalytic condition, if compared to the liquid product derived from thermal degradation at the same temperature. HZSM-5 led to the production of a high yield of styrene (17.5%), while HUSY favoured the formation of ethylbenzene (15%). Energy released by combustion of the oil was around 39MJ/kg, thus suggesting the possibility to exploit it as a fuel, if the recovery of chemical compounds could not be realised. Elemental and proximate analysis of char and GC-TCD analysis of the gas were also performed. Finally, it was estimated to what extent these two products, showing a relevant ability to release energy, could fulfil the energy demand requested in pyrolysis.


Subject(s)
Electronic Waste , Incineration/methods , Plastics , Catalysis , Recycling
5.
Waste Manag ; 51: 3-12, 2016 May.
Article in English | MEDLINE | ID: mdl-26969287

ABSTRACT

This paper presents an original device for the separation of plastic polymers from mixtures. Due to the combination of a characteristic flow pattern developing within the apparatus and density, shape and size differences among two or more polymers, this device allows their separation into two products, one collected within the instrument and the other one expelled through its outlet ducts. Experimental tests have been conducted to investigate the effectiveness of the apparatus, using two geometric arrangements, nine hydraulic configurations and three selections of polymers at three stages of a material life cycle. Tests with samples composed of a single typology of polymer have been used to understand the interaction between the particles and the carrying fluid within the apparatus in different hydraulic configurations and geometric arrangements. Multi-material tests are essential to simulate the real conditions in an industrial recycling plant. The separation results have been evaluated in terms of grade and recovery of a useful material. Under the proper hydraulic configurations, the experimentation showed that it is possible to produce an almost pure concentrate of Polyethylene Terephthalate (PET) from a mixture of 85% PET and 15% Polycarbonate (PC) (concentrate grade and recovery equal to 99.5% and 95.1%) and a mixture of 85% PET and 15% Polyvinyl Chloride (PVC) (concentrate grade and recovery equal to 97.9% and 100.0%). It is further demonstrated that almost pure concentrates of PVC and PC can be produced from a mixture of 85% PVC and 15% PC (PVC grade and recovery equal to 99.9% and 99.7%) and a mixture of 85% PC and 15% PVC (PC grade and recovery equal to 99.0% and 99.5%).


Subject(s)
Plastics/analysis , Polycarboxylate Cement/chemistry , Polyethylene Terephthalates/chemistry , Polyvinyl Chloride/chemistry , Waste Management/methods , Polycarboxylate Cement/analysis , Polyethylene Terephthalates/analysis , Polyvinyl Chloride/analysis , Recycling , Refuse Disposal , Solid Waste/analysis
6.
Waste Manag ; 32(7): 1306-15, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22459510

ABSTRACT

The recovery of high-quality plastic materials is becoming an increasingly challenging issue for the recycling sector. Technologies for plastic recycling have to guarantee high-quality secondary raw material, complying with specific standards, for use in industrial applications. The variability in waste plastics does not always correspond to evident differences in physical characteristics, making traditional methodologies ineffective for plastic separation. The Multidune separator is a hydraulic channel allowing the sorting of solid particles on the basis of differential transport mechanisms by generating particular fluid dynamic conditions due to its geometric configuration and operational settings. In this paper, the fluid dynamic conditions were investigated by an image analysis technique, allowing the reconstruction of velocity fields generated inside the Multidune, considering two different geometric configurations of the device, Configuration A and Configuration B. Furthermore, tests on mono- and bi-material samples were completed with varying operational conditions under both configurations. In both series of experiments, the bi-material samples were composed of differing proportions (85% vs. 15%) to simulate real conditions in an industrial plant for the purifying of a useful fraction from a contaminating fraction. The separation results were evaluated in terms of grade and recovery of the useful fraction.


Subject(s)
Plastics , Refuse Disposal/instrumentation , Refuse Disposal/methods , Equipment Design , Hydrodynamics , Image Processing, Computer-Assisted , Recycling , Waste Products
7.
Waste Manag ; 28(9): 1560-71, 2008.
Article in English | MEDLINE | ID: mdl-17935965

ABSTRACT

Recycling of plastic materials is a rapidly developing discipline because of environmental awareness, the need to conserve materials and energy, and the growing demand to increase the production economy. The main problem in plastics recovery and recycling is related to the variety of plastic wastes, even if selective collection occurs. Therefore, plastic materials can be recycled either as mixtures or as single types, separating the different typologies by their physical (size, specific mass, etc.) and/or chemical properties. However, separation of plastics in single typologies by traditional processes and devices is difficult due to their typical low variability in properties. This paper presents a new research development for recycling industry: the Multidune separator. This is a device constructed from a sequence of parallel semi-cylindrical tubes of transparent plastic welded together in a plane. The lower half is shifted laterally and then fixed relative to the upper half. Flow is then induced in the lateral direction normal to the axis of the tubes, creating a main flow channel and two recirculation zones. This apparatus creates a differential transport of particles of low specific mass, near to 1g/cm3, allowing their separation. The flow field in the Multidune separator is studied via Particle Tracking Velocimetry (PTV). Eulerian analysis of the data is performed to gather information about the fluid-dynamics features established by different hydraulic heads at the inlet of the Multidune. Preliminary tests on monomaterial samples have been performed, varying several operative parameters to determine the best set of values. Therefore, separation tests have been executed on composite samples, obtaining satisfactory results in terms of plastic separation feasibility.


Subject(s)
Plastics , Refuse Disposal/instrumentation , Refuse Disposal/methods , Conservation of Natural Resources/methods , Waste Management/instrumentation , Waste Management/methods
8.
Waste Manag ; 24(7): 663-72, 2004.
Article in English | MEDLINE | ID: mdl-15288298

ABSTRACT

Recycling of plastics is a big issue in terms of environmental sustainability and of waste management. The development of proper technologies for plastic recycling is recognised as a priority. To achieve this aim, the technologies applied in mineral processing can be adapted to recycling systems. In particular, the improvement of comminution technologies is one of the main actions to improve the quality of recycled plastics. The aim of this work is to point out suitable comminution processes for different types of plastic waste. Laboratory comminution tests have been carried out under different conditions of temperature and sample pre-conditioning adopting as refrigerant agents CO2 and liquid nitrogen. The temperature has been monitored by thermocouples placed in the milling chamber. Also different internal mill screens have been adopted. A proper procedure has been set up in order to obtain a selective comminution and a size reduction suitable for further separation treatment. Tests have been performed on plastics coming from medical plastic waste and from a plant for spent lead batteries recycling. Results coming from different mill devices have been compared taking into consideration different indexes for representative size distributions. The results of the performed tests show as cryo-comminution improves the effectiveness of size reduction of plastics, promotes liberation of constituents and increases specific surface size of comminuted particles in comparison to a comminution process carried out at room temperature.


Subject(s)
Conservation of Natural Resources , Plastics , Waste Management/methods , Carbon Dioxide , Freezing , Materials Testing , Nitrogen
9.
Waste Manag ; 23(10): 951-8, 2003.
Article in English | MEDLINE | ID: mdl-14614928

ABSTRACT

Minimisation of waste to landfilling is recognised as a priority in waste management by European rules. In order to achieve this goal, developing suitable technologies for waste recycling is therefore of great importance. To achieve this aim the technologies utilised for mineral processing can be taken into consideration to develop recycling systems. In particular comminution and separation processes can be adopted to recover valuable materials from composite waste. In this work the possibility of recycling pharmaceutical blister packaging has been investigated. A suitable comminution process has been applied in order to obtain the liberation of the plastic and aluminium components. Experiments of electrical separation have been carried out in order to point out the influence of the process parameters on the selections of the different materials and to set up the optimum operating conditions.


Subject(s)
Conservation of Natural Resources , Plastics/isolation & purification , Refuse Disposal/methods , Electricity , Environment , Europe , Materials Testing , Minerals/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL