Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 109: 117791, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38870715

ABSTRACT

The flavonoid family is a set of well-known bioactive natural molecules, with a wide range of potential therapeutic applications. Despite the promising results obtained in preliminary in vitro/vivo studies, their pharmacokinetic and pharmacodynamic profiles are severely compromised by chemical instability. To address this issue, the scaffold-hopping approach is a promising strategy for the structural optimization of natural leads to discover more potent analogues. In this scenario, this Perspective provides a critical analysis on how the replacement of the chromon-4-one flavonoid core with other bioisosteric nitrogen/sulphur heterocycles might affect the chemical, pharmaceutical and biological properties of the resulting new chemical entities. The investigated derivatives were classified on the basis of their biological activity and potential therapeutic indications. For each session, the target(s), the specific mechanism of action, if available, and the key pharmacophoric moieties were highlighted, as revealed by X-ray crystal structures and in silico structure-based studies. Biological activity data, in vitro/vivo studies, were examined: a particular focus was given on the improvements observed with the new heterocyclic analogues compared to the natural flavonoids. This overview of the scaffold-hopping advantages in flavonoid compounds is of great interest to the medicinal chemistry community to better exploit the vast potential of these natural molecules and to identify new bioactive molecules.

3.
ACS Omega ; 8(38): 34640-34649, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37779971

ABSTRACT

RET kinase gain-of-function mutations represent the main cause of the high aggressiveness and invasiveness of medullary thyroid cancer (MTC). The selective inhibition of the RET kinase is a suitable strategy for the treatment of this endocrine neoplasia. Herein, we performed an innovative ligand-based virtual screening protocol using the DRUDITonline web service, focusing on the RET kinase as a biological target. In this process, thieno[3,2-c]quinolines 6a-e and 7a-e were proposed as new potential RET inhibitors. The selected compounds were synthetized by appropriate synthetic strategies, and in vitro evaluation of antiproliferative properties conducted on the particularly aggressive MTC cell line TT(C634R) identified compounds 6a-d as promising anticancer agents, with IC50 values in the micromolar range. Further structure-based computational studies revealed a significant capability of the most active compounds to the complex RET tyrosine kinase domain. The interesting antiproliferative results supported by in silico predictions suggest that these compounds may represent a starting point for the development of a new series of small heterocyclic molecules for the treatment of MTC.

4.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37762072

ABSTRACT

CDK-1 and PARP-1 play crucial roles in breast cancer progression. Compounds acting as CDK-1 and/or PARP-1 inhibitors can induct cell death in breast cancer with a selective synthetic lethality mechanism. A mixed treatment by means of CDK-1 and PARP-1 inhibitors resulted in radical breast cancer cell growth reduction. Inhibitors with a dual target mechanism of action could arrest cancer progression by simultaneously blocking the DNA repair mechanism and cell cycle, resulting in advantageous monotherapy. To this aim, in the present work, we identified compound 645656 with a significant affinity for both CDK-1 and PARP-1 by a mixed ligand- and structure-based virtual screening protocol. The Biotarget Predictor Tool was used at first in a Multitarget mode to filter the large National Cancer Institute (NCI) database. Then, hierarchical docking studies were performed to further screen the compounds and evaluate the ligands binding mode, whose putative dual-target mechanism of action was investigated through the correlation between the antiproliferative activity data and the target proteins' (CDK-1 and PARP-1) expression pattern. Finally, a Molecular Dynamics Simulation confirmed the high stability of the most effective selected compound 645656 in complex with both PARP-1 and CDK-1.


Subject(s)
Antineoplastic Agents , Mammaplasty , Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Ligands , Antineoplastic Agents/pharmacology , Cell Cycle
5.
Eur J Med Chem ; 258: 115537, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37329715

ABSTRACT

A series of biologically unexplored substituted 1,3,4-subtituted-pyrrolo[3,2-c]quinoline derivatives (PQs) was evaluated against a panel of about 60 tumor cells (NCI). Based on the preliminary antiproliferative data, the optimizations efforts permitted us to design and synthesize a new series of derivatives allowing us to individuate a promising hit (4g). The insertion of a 4-benzo[d] [1,3]dioxol-5-yl moiety on increased and extended the activity towards five panel tumor cell lines such as leukemia, CNS, melanoma, renal and breast cancer, reaching IG50 in the low µM range. Replacement of this latter with a 4-(OH-di-Cl-Ph) group (4i) or introduction a Cl-propyl chain in position 1 (5), selectively addressed the activity against the entire leukemia sub-panel (CCRF-CEM, K-562, MOLT-4, RPMI-8226, SR). Preliminary biological assays on MCF-7 such as cell cycle, clonogenic assay, ROS content test alongside a comparison of viability between MCF-7 and non-tumorigenic MCF-10 were investigated. Among the main anticancer targets involved in breast cancer, HSP90 and ER receptors were selected for in silico studies. Docking analysis revealed a valuable affinity for HSP90 providing structural insights on the binding mode, and useful features for optimization.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Hydroxyquinolines , Quinolines , Humans , Female , Molecular Structure , Structure-Activity Relationship , Cell Proliferation , Cell Line, Tumor , Hydroxyquinolines/pharmacology , Quinolines/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Molecular Docking Simulation
6.
Int J Mol Sci ; 24(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37176082

ABSTRACT

The viral main protease is one of the most attractive targets among all key enzymes involved in the life cycle of SARS-CoV-2. Considering its mechanism of action, both the catalytic and dimerization regions could represent crucial sites for modulating its activity. Dual-binding the SARS-CoV-2 main protease inhibitors could arrest the replication process of the virus by simultaneously preventing dimerization and proteolytic activity. To this aim, in the present work, we identified two series' of small molecules with a significant affinity for SARS-CoV-2 MPRO, by a hybrid virtual screening protocol, combining ligand- and structure-based approaches with multivariate statistical analysis. The Biotarget Predictor Tool was used to filter a large in-house structural database and select a set of benzo[b]thiophene and benzo[b]furan derivatives. ADME properties were investigated, and induced fit docking studies were performed to confirm the DRUDIT prediction. Principal component analysis and docking protocol at the SARS-CoV-2 MPRO dimerization site enable the identification of compounds 1b,c,i,l and 2i,l as promising drug molecules, showing favorable dual binding site affinity on SARS-CoV-2 MPRO.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Antiviral Agents/chemistry , Ligands , Protease Inhibitors/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation
7.
Int J Mol Sci ; 23(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36430850

ABSTRACT

In vitro antiproliferative assays still represent one of the most important tools in the anticancer drug discovery field, especially to gain insights into the mechanisms of action of anticancer small molecules. The NCI-DTP (National Cancer Institute Developmental Therapeutics Program) undoubtedly represents the most famous project aimed at rapidly testing thousands of compounds against multiple tumor cell lines (NCI60). The large amount of biological data stored in the National Cancer Institute (NCI) database and many other databases has led researchers in the fields of computational biology and medicinal chemistry to develop tools to predict the anticancer properties of new agents in advance. In this work, based on the available antiproliferative data collected by the NCI and the manipulation of molecular descriptors, we propose the new in silico Antiproliferative Activity Predictor (AAP) tool to calculate the GI50 values of input structures against the NCI60 panel. This ligand-based protocol, validated by both internal and external sets of structures, has proven to be highly reliable and robust. The obtained GI50 values of a test set of 99 structures present an error of less than ±1 unit. The AAP is more powerful for GI50 calculation in the range of 4-6, showing that the results strictly correlate with the experimental data. The encouraging results were further supported by the examination of an in-house database of curcumin analogues that have already been studied as antiproliferative agents. The AAP tool identified several potentially active compounds, and a subsequent evaluation of a set of molecules selected by the NCI for the one-dose/five-dose antiproliferative assays confirmed the great potential of our protocol for the development of new anticancer small molecules. The integration of the AAP tool in the free web service DRUDIT provides an interesting device for the discovery and/or optimization of anticancer drugs to the medicinal chemistry community. The training set will be updated with new NCI-tested compounds to cover more chemical spaces, activities, and cell lines. Currently, the same protocol is being developed for predicting the TGI (total growth inhibition) and LC50 (median lethal concentration) parameters to estimate toxicity profiles of small molecules.


Subject(s)
Antineoplastic Agents , Curcumin , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Databases, Factual
8.
J Med Chem ; 65(19): 12500-12534, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36169610

ABSTRACT

The viral main protease is one of the most attractive targets among all key enzymes involved in the SARS-CoV-2 life cycle. Covalent inhibition of the cysteine145 of SARS-CoV-2 MPRO with selective antiviral drugs will arrest the replication process of the virus without affecting human catalytic pathways. In this Perspective, we analyzed the in silico, in vitro, and in vivo data of the most representative examples of covalent SARS-CoV-2 MPRO inhibitors reported in the literature to date. In particular, the studied molecules were classified into eight different categories according to their reactive electrophilic warheads, highlighting the differences between their reversible/irreversible mechanism of inhibition. Furthermore, the analyses of the most recurrent pharmacophoric moieties and stereochemistry of chiral carbons were reported. The analyses of noncovalent and covalent in silico protocols, provided in this Perspective, would be useful for the scientific community to discover new and more efficient covalent SARS-CoV-2 MPRO inhibitors.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus 3C Proteases , Cysteine , Cysteine Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2 , Structure-Activity Relationship , Viral Nonstructural Proteins
9.
Molecules ; 26(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299583

ABSTRACT

Background: G-quadruplex (G4) forming sequences are recurrent in telomeres and promoter regions of several protooncogenes. In normal cells, the transient arrangements of DNA in G-tetrads may regulate replication, transcription, and translation processes. Tumors are characterized by uncontrolled cell growth and tissue invasiveness and some of them are possibly mediated by gene expression involving G-quadruplexes. The stabilization of G-quadruplex sequences with small molecules is considered a promising strategy in anticancer targeted therapy. Methods: Molecular virtual screening allowed us identifying novel symmetric bifunctionalized naphtho[1,2-b:8,7-b']dithiophene ligands as interesting candidates targeting h-Telo and c-MYC G-quadruplexes. A set of unexplored naphtho-dithiophene derivatives has been synthesized and biologically tested through in vitro antiproliferative assays and spectroscopic experiments in solution. Results: The analysis of biological and spectroscopic data highlighted noteworthy cytotoxic effects on HeLa cancer cell line (GI50 in the low µM range), but weak interactions with G-quadruplex c-MYC promoter. Conclusions: The new series of naphtho[1,2-b:8,7-b']dithiophene derivatives, bearing the pharmacophoric assumptions necessary to stabilize G-quadruplexes, have been designed and successfully synthesized. The interesting antiproliferative results supported by computer aided rational approaches suggest that these studies are a significant starting point for a lead optimization process and the isolation of a more efficacious set of G-quadruplexes stabilizers.


Subject(s)
Antineoplastic Agents , Cell Proliferation/drug effects , Cytotoxins , G-Quadruplexes/drug effects , Naphthols , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , HeLa Cells , Humans , Naphthols/chemical synthesis , Naphthols/chemistry , Naphthols/pharmacology , Proto-Oncogene Proteins c-myc/biosynthesis
10.
Int J Mol Sci ; 22(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199858

ABSTRACT

The approval of the first HIV-1 protease inhibitors (HIV-1 PRIs) marked a fundamental step in the control of AIDS, and this class of agents still represents the mainstay therapy for this illness. Despite the undisputed benefits, the necessary lifelong treatment led to numerous severe side-effects (metabolic syndrome, hepatotoxicity, diabetes, etc.). The HIV-1 PRIs are capable of interacting with "secondary" targets (off-targets) characterized by different biological activities from that of HIV-1 protease. In this scenario, the in-silico techniques undoubtedly contributed to the design of new small molecules with well-fitting selectivity against the main target, analyzing possible undesirable interactions that are already in the early stages of the research process. The present work is focused on a new mixed-hierarchical, ligand-structure-based protocol, which is centered on an on/off-target approach, to identify the new selective inhibitors of HIV-1 PR. The use of the well-established, ligand-based tools available in the DRUDIT web platform, in combination with a conventional, structure-based molecular docking process, permitted to fast screen a large database of active molecules and to select a set of structure with optimal on/off-target profiles. Therefore, the method exposed herein, could represent a reliable help in the research of new selective targeted small molecules, permitting to design new agents without undesirable interactions.


Subject(s)
Drug Design , Drug Discovery , HIV Infections/drug therapy , HIV Protease Inhibitors/pharmacology , HIV Protease/chemistry , HIV-1/drug effects , Catalytic Domain , Computer Simulation , HIV Infections/enzymology , HIV Infections/virology , HIV-1/enzymology , Humans , Ligands , Molecular Docking Simulation , Molecular Structure , Protein Conformation , Structure-Activity Relationship
11.
Drug Discov Today ; 26(10): 2431-2438, 2021 10.
Article in English | MEDLINE | ID: mdl-34048894

ABSTRACT

Matching biological data sequences is one of the most interesting ways to discover new bioactive compounds. In particular, matching cell chemosensitivity with a protein expression profile can be a useful approach to predict the activity of compounds against definite biological targets. In this review, we discuss this correlation. First, we analyze case studies in which some known drugs, acting on known targets, show a good correlation between their antiproliferative activities and protein expression when a large panel of tumor cells is considered. Then, we highlight how the application of in silico methods based on the correlation between cell line chemosensitivity and gene/protein expression patterns might be a quick, cheap, and interesting approach to predict the biological activity of investigated molecules.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Neoplasms/drug therapy , Cell Line, Tumor , Computer Simulation , Drug Discovery/methods , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics , Neoplasms/pathology
12.
Eur J Med Chem ; 220: 113555, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34052677

ABSTRACT

Quinoline is one of the most important and versatile nitrogen heterocycles embodied in several biologically active molecules. Within the numerous quinolines developed as antiproliferative agents, this review is focused on compounds interfering with DNA structure or with proteins/enzymes involved in the regulation of double helix functional processes. In this light, a special focus is given to the quinoline compounds, acting with classical/well-known mechanisms of action (DNA intercalators or Topoisomerase inhibitors). In particular, the quinoline drugs amsacrine and camptothecin (CPT) have been studied as key lead compounds for the development of new agents with improved PK and tolerability properties. Moreover, notable attention has been paid to the quinoline molecules, which are able to interfere with emerging targets involved in cancer progression, as G-quadruplexes or the epigenetic ones (e.g.: histone deacetylase, DNA and histones methyltransferase). The antiproliferative and the enzymatic inhibition data of the reviewed compounds have been analyzed. Furthermore, concerning the SAR (structure-activity relationship) aspects, the most recurrent ligand-protein interactions are summarized, underling the structural requirements for each kind of mechanism of action.


Subject(s)
Antineoplastic Agents/pharmacology , DNA, Neoplasm/drug effects , DNA-Binding Proteins/antagonists & inhibitors , Quinolines/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , DNA-Binding Proteins/metabolism , G-Quadruplexes/drug effects , Humans , Molecular Structure , Quinolines/chemistry
13.
Int J Mol Sci ; 22(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918281

ABSTRACT

The cell division cycle 25 (Cdc25) protein family plays a crucial role in controlling cell proliferation, making it an excellent target for cancer therapy. In this work, a set of small molecules were identified as Cdc25 modulators by applying a mixed ligand-structure-based approach and taking advantage of the correlation between the chemosensitivity of selected structures and the protein expression pattern of the proposed target. In the first step of the in silico protocol, a set of molecules acting as Cdc25 inhibitors were identified through a new ligand-based protocol and the evaluation of a large database of molecular structures. Subsequently, induced-fit docking (IFD) studies allowed us to further reduce the number of compounds biologically screened. In vitro antiproliferative and enzymatic inhibition assays on the selected compounds led to the identification of new structurally heterogeneous inhibitors of Cdc25 proteins. Among them, J3955, the most active inhibitor, showed concentration-dependent antiproliferative activity against HepG2 cells, with GI50 in the low micromolar range. When J3955 was tested in cell-cycle perturbation experiments, it caused mitotic failure by G2/M-phase cell-cycle arrest. Finally, Western blotting analysis showed an increment of phosphorylated Cdk1 levels in cells exposed to J3955, indicating its specific influence in cellular pathways involving Cdc25 proteins.


Subject(s)
cdc25 Phosphatases/antagonists & inhibitors , Binding Sites , CDC2 Protein Kinase/metabolism , Computer Simulation , Drug Discovery , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Ligands , Molecular Targeted Therapy , Phosphorylation/drug effects , cdc25 Phosphatases/metabolism
14.
Molecules ; 25(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961977

ABSTRACT

The quinoline ring system has long been known as a versatile nucleus in the design and synthesis of biologically active compounds. Currently, more than one hundred quinoline compounds have been approved in therapy as antimicrobial, local anaesthetic, antipsychotic, and anticancer drugs. In drug discovery, indeed, over the last few years, an increase in the publication of papers and patents about quinoline derivatives possessing antiproliferative properties has been observed. This trend can be justified by the versatility and accessibility of the quinoline scaffold, from which new derivatives can be easily designed and synthesized. Within the numerous quinoline small molecules developed as antiproliferative drugs, this review is focused on compounds effective on c-Met, VEGF (vascular endothelial growth factor), and EGF (epidermal growth factor) receptors, pivotal targets for the activation of important carcinogenic pathways (Ras/Raf/MEK and PI3K/AkT/mTOR). These signalling cascades are closely connected and regulate the survival processes in the cell, such as proliferation, apoptosis, differentiation, and angiogenesis. The antiproliferative biological data of remarkable quinoline compounds have been analysed, confirming the pivotal importance of this ring system in the efficacy of several approved drugs. Furthermore, in view of an SAR (structure-activity relationship) study, the most recurrent ligand-protein interactions of the reviewed molecules are summarized.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Quinolines/chemistry , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Survival/drug effects , ErbB Receptors/metabolism , Humans , Molecular Dynamics Simulation , Proto-Oncogene Proteins c-met/metabolism , Quinolines/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...