Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37687540

ABSTRACT

The present work studies the response to hygrothermal ageing of natural fibre composites (NFCs) against synthetic fibre composites when using three different types of polymers as matrices. For ageing, coupons were fully immersed in distilled water at 23, 40, and 60 °C for a total ageing period of 56 days. Flax fibre-reinforced composites, using two recyclable polymer systems: (i) a bio-based recyclable epoxy and (ii) an acrylic-based liquid thermoplastic resin, were tested against conventional glass fibre-reinforced composites employing a synthetic (petroleum-based) epoxy. Different fibre/polymer matrix material combinations were tested to evaluate the effects of hygrothermal ageing degradation on the reinforcement, matrix, and fibre/matrix interface. The hygrothermal ageing response of unaged and aged composite coupons was assessed in terms of flexural and viscoelastic performance, physicochemical properties, and microscopy (SEM-Scanning Electron Microscopy).

2.
Materials (Basel) ; 14(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802309

ABSTRACT

Epoxy and unsaturated polyester resins are the most used thermosetting polymers. They are commonly used in electronics, construction, marine, automotive and aircraft industries. Moreover, reinforcing both epoxy and unsaturated polyester resins with carbon or glass fibre in a fabric form has enabled them to be used in high-performance applications. However, their organic nature as any other polymeric materials made them highly flammable materials. Enhancing the flame retardancy performance of thermosetting polymers and their composites can be improved by the addition of flame-retardant materials, but this comes at the expense of their mechanical properties. In this regard, a comprehensive review on the recent research articles that studied the flame retardancy of epoxy resin, unsaturated polyester resin and their composites were covered. Flame retardancy performance of different flame retardant/polymer systems was evaluated in terms of Flame Retardancy index (FRI) that was calculated based on the data extracted from the cone calorimeter test. Furthermore, flame retardant selection charts that relate between the flame retardancy level with mechanical properties in the aspects of tensile and flexural strength were presented. This review paper is also dedicated to providing the reader with a brief overview on the combustion mechanism of polymeric materials, their flammability behaviour and the commonly used flammability testing techniques and the mechanism of action of flame retardants.

3.
Materials (Basel) ; 10(9)2017 Aug 26.
Article in English | MEDLINE | ID: mdl-28846607

ABSTRACT

Green composites from polypropylene and lignin-based natural material were manufactured using a melt extrusion process. The lignin-based material used was the so called "liquid wood". The PP/"Liquid Wood" blends were extruded with "liquid wood" content varying from 20 wt % to 80 wt %. The blends were thoroughly characterized by flexural, impact, and dynamic mechanical testing. The addition of the Liquid Wood resulted in a great improvement in terms of both the flexural modulus and strength but, on the other hand, a reduction of the impact strength was observed. For one blend composition, the composites reinforced with hemp fibers were also studied. The addition of hemp allowed us to further improve the mechanical properties. The composite with 20 wt % of hemp, subjected to up to three recycling cycles, showed good mechanical property retention and thermal stability after recycling.

SELECTION OF CITATIONS
SEARCH DETAIL