Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1179827, 2023.
Article in English | MEDLINE | ID: mdl-37138866

ABSTRACT

Background: The genesis of SMAC mimetic drugs is founded on the observation that many cancers amplify IAP proteins to facilitate their survival, and therefore removal of these pathways would re-sensitize the cells towards apoptosis. It has become increasingly clear that SMAC mimetics also interface with the immune system in a modulatory manner. Suppression of IAP function by SMAC mimetics activates the non-canonical NF-κB pathway which can augment T cell function, opening the possibility of using SMAC mimetics to enhance immunotherapeutics. Methods: We have investigated the SMAC mimetic LCL161, which promotes degradation of cIAP-1 and cIAP-2, as an agent for delivering transient costimulation to engineered BMCA-specific human TAC T cells. In doing so we also sought to understand the cellular and molecular effects of LCL161 on T cell biology. Results: LCL161 activated the non-canonical NF-κB pathway and enhanced antigen-driven TAC T cell proliferation and survival. Transcriptional profiling from TAC T cells treated with LCL161 revealed differential expression of costimulatory and apoptosis-related proteins, namely CD30 and FAIM3. We hypothesized that regulation of these genes by LCL161 may influence the drug's effects on T cells. We reversed the differential expression through genetic engineering and observed impaired costimulation by LCL161, particularly when CD30 was deleted. While LCL161 can provide a costimulatory signal to TAC T cells following exposure to isolated antigen, we did not observe a similar pattern when TAC T cells were stimulated with myeloma cells expressing the target antigen. We questioned whether FasL expression by myeloma cells may antagonize the costimulatory effects of LCL161. Fas-KO TAC T cells displayed superior expansion following antigen stimulation in the presence of LCL161, suggesting a role for Fas-related T cell death in limiting the magnitude of the T cell response to antigen in the presence of LCL161. Conclusions: Our results demonstrate that LCL161 provides costimulation to TAC T cells exposed to antigen alone, however LCL161 did not enhance TAC T cell anti-tumor function when challenged with myeloma cells and may be limited due to sensitization of T cells towards Fas-mediated apoptosis.


Subject(s)
Multiple Myeloma , NF-kappa B , Humans , NF-kappa B/metabolism , Multiple Myeloma/drug therapy , Cell Line, Tumor , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism
2.
Pharmacol Ther ; 245: 108402, 2023 05.
Article in English | MEDLINE | ID: mdl-37004800

ABSTRACT

Janus kinase (JAK) inhibitors, also known as jakinibs, are third-generation oral small molecules that have expanded the therapeutic options for the management of chronic inflammatory diseases, including inflammatory bowel disease (IBD). Tofacitinib, a pan-JAK inhibitor, has spearheaded the new JAK class for IBD treatment. Unfortunately, serious adverse effects, including cardiovascular complications such as pulmonary embolism and venous thromboembolism or even death from any cause, have been reported for tofacitinib. However, it is anticipated that next-generation selective JAK inhibitors may limit the development of serious adverse events, leading to a safer treatment course with these novel targeted therapies. Nevertheless, although this drug class was recently introduced, following the launch of second-generation biologics in the late 1990s, it is breaking new ground and has been shown to efficiently modulate complex cytokine-driven inflammation in both preclinical models and human studies. Herein, we review the clinical opportunities for targeting JAK1 signaling in the pathophysiology of IBD, the biology and chemistry underpinning these target-selective compounds, and their mechanisms of actions. We also discuss the potential for these inhibitors in efforts to balance their benefits and harms.


Subject(s)
Inflammatory Bowel Diseases , Janus Kinase Inhibitors , Humans , Janus Kinase Inhibitors/adverse effects , Inflammatory Bowel Diseases/drug therapy , Cytokines , Inflammation/drug therapy , Janus Kinase 1
4.
Mol Cell Oncol ; 6(4): 1607456, 2019.
Article in English | MEDLINE | ID: mdl-31211235

ABSTRACT

A genome-wide small-interfering RNA-based screen identified the transcription factor Specificity Protein 3 (SP3) as a critical factor for Second mitochondrial-derived activator of caspase (Smac) mimetic-mediated killing of cancer cells. In concert with Nuclear Factor kappa B (NF-κB,) SP3 is required for the expression of the cytokine Tumor Necrosis Factor alpha (TNF-α) under basal and Smac mimetic-stimulated conditions.

5.
Skelet Muscle ; 9(1): 13, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31126323

ABSTRACT

BACKGROUND: Skeletal muscle atrophy is a pathological condition that contributes to morbidity in a variety of conditions including denervation, cachexia, and aging. Muscle atrophy is characterized as decreased muscle fiber cross-sectional area and protein content due, in part, to the proteolytic activities of two muscle-specific E3 ubiquitin ligases: muscle RING-finger 1 (MuRF1) and muscle atrophy F-box (MAFbx or Atrogin-1). The nuclear factor-kappa B (NF-κB) pathway has emerged as a critical signaling network in skeletal muscle atrophy and has become a prime therapeutic target for the treatment of muscle diseases. Unfortunately, none of the NF-κB targeting drugs are currently being used to treat these diseases, likely because of our limited knowledge and specificity, for muscle biology and disease. The cellular inhibitor of apoptosis 1 (cIAP1) protein is a positive regulator of tumor necrosis factor alpha (TNFα)-mediated classical NF-κB signaling, and cIAP1 loss has been shown to enhance muscle regeneration during acute and chronic injury. METHODS: Sciatic nerve transection in wild-type, cIAP1-null and Smac mimetic compound (SMC)-treated mice was performed to investigate the role of cIAP1 in denervation-induced atrophy. Genetic in vitro models of C2C12 myoblasts and primary myoblasts were also used to examine the role of classical NF-κB activity in cIAP1-induced myotube atrophy. RESULTS: We found that cIAP1 expression was upregulated in denervated muscles compared to non-denervated controls 14 days after denervation. Genetic and pharmacological loss of cIAP1 attenuated denervation-induced muscle atrophy and overexpression of cIAP1 in myotubes was sufficient to induce atrophy. The induction of myotube atrophy by cIAP1 was attenuated when the classical NF-κB signaling pathway was inhibited. CONCLUSIONS: These results demonstrate the cIAP1 is an important mediator of NF-κB/MuRF1 signaling in skeletal muscle atrophy and is a promising therapeutic target for muscle wasting diseases.


Subject(s)
Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Muscle Denervation/adverse effects , Muscular Atrophy/etiology , Animals , Apoptosis Regulatory Proteins/pharmacology , Cell Line , Female , Gene Targeting , Humans , Inhibitor of Apoptosis Proteins/deficiency , Inhibitor of Apoptosis Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Proteins/pharmacology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Myoblasts, Skeletal/metabolism , NF-kappa B/metabolism , Signal Transduction , Thiazoles/pharmacology , Up-Regulation
6.
Sci Signal ; 12(566)2019 01 29.
Article in English | MEDLINE | ID: mdl-30696705

ABSTRACT

The controlled production and downstream signaling of the inflammatory cytokine tumor necrosis factor-α (TNF-α) are important for immunity and its anticancer effects. Although chronic stimulation with TNF-α is detrimental to the health of the host in several autoimmune and inflammatory disorders, TNF-α-contrary to what its name implies-leads to cancer formation by promoting cell proliferation and survival. Smac mimetic compounds (SMCs), small-molecule antagonists of inhibitor of apoptosis proteins (IAPs), switch the TNF-α signal from promoting survival to promoting death in cancer cells. Using a genome-wide siRNA screen to identify factors required for SMC-to-TNF-α-mediated cancer cell death, we identified the transcription factor SP3 as a critical molecule in both basal and SMC-induced production of TNF-α by engaging the nuclear factor κB (NF-κB) transcriptional pathway. Moreover, the promotion of TNF-α expression by SP3 activity confers differential sensitivity of cancer versus normal cells to SMC treatment. The key role of SP3 in TNF-α production and signaling will help us further understand TNF-α biology and provide insight into mechanisms relevant to cancer and inflammatory disease.


Subject(s)
Biomimetic Materials/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplasms/metabolism , Signal Transduction/drug effects , Sp3 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Mice , Mitochondrial Proteins/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasms/genetics , Neoplasms/pathology , RNA Interference , Signal Transduction/genetics , Sp3 Transcription Factor/genetics , Tumor Necrosis Factor-alpha/genetics
7.
Mol Ther Oncolytics ; 10: 28-39, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30101187

ABSTRACT

Smac mimetic compounds (SMCs) are anti-cancer drugs that antagonize Inhibitor of Apoptosis proteins, which consequently sensitize cancer cells to death in the presence of proinflammatory ligands such as tumor necrosis factor alpha (TNF-α). SMCs synergize with the attenuated oncolytic vesicular stomatitis virus (VSVΔ51) by eliciting an innate immune response, which is dependent on the endogenous production of TNF-α and type I interferon. To improve on this SMC-mediated synergistic response, we generated TNF-α-armed VSVΔ51 to produce elevated levels of this death ligand. Due to ectopic expression of TNF-α from infected cells, a lower viral dose of TNF-α-armed VSVΔ51 combined with treatment of the SMC LCL161 was sufficient to improve the survival rate compared to LCL161 and unarmed VSVΔ51 co-therapy. This improved response is attributed to a bystander effect whereby the spread of TNF-α from infected cells leads to the death of uninfected cells in the presence of LCL161. In addition, the treatments induced vascular collapse in solid tumors with a concomitant increase of tumor cell death, revealing another mechanism by which cytokine-armed VSVΔ51 in combination with LCL161 can kill tumor cells. Our studies demonstrate the potential for cytokine-engineered oncolytic virus and SMCs as a new combination immunotherapy for cancer treatment.

9.
PLoS One ; 13(3): e0193643, 2018.
Article in English | MEDLINE | ID: mdl-29518103

ABSTRACT

Monocytes and macrophages constitute the first line of defense of the immune system against external pathogens. Macrophages have a highly plastic phenotype depending on environmental conditions; the extremes of this phenotypic spectrum are a pro-inflammatory defensive role (M1 phenotype) and an anti-inflammatory tissue-repair one (M2 phenotype). The Inhibitor of Apoptosis (IAP) proteins have important roles in the regulation of several cellular processes, including innate and adaptive immunity. In this study we have analyzed the differential expression of the IAPs, NAIP, cIAP1 and cIAP2, during macrophage differentiation and polarization into M1 or M2. In polarized THP-1 cells and primary human macrophages, NAIP is abundantly expressed in M2 macrophages, while cIAP1 and cIAP2 show an inverse pattern of expression in polarized macrophages, with elevated expression levels of cIAP1 in M2 and cIAP2 preferentially expressed in M1. Interestingly, treatment with the IAP antagonist SMC-LCL161, induced the upregulation of NAIP in M2, the downregulation of cIAP1 in M1 and M2 and an induction of cIAP2 in M1 macrophages.


Subject(s)
Baculoviral IAP Repeat-Containing 3 Protein/metabolism , Cell Differentiation/physiology , Inhibitor of Apoptosis Proteins/metabolism , Macrophages/metabolism , Neuronal Apoptosis-Inhibitory Protein/metabolism , Ubiquitin-Protein Ligases/metabolism , Apoptosis Regulatory Proteins , Blotting, Western , Cell Differentiation/drug effects , Cells, Cultured , Flow Cytometry , Gene Expression , Gene Expression Profiling , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/cytology , Macrophages/drug effects , Mitochondrial Proteins/metabolism , Monocytes/cytology , Monocytes/metabolism , RNA, Messenger/metabolism
10.
Nat Commun ; 82017 02 15.
Article in English | MEDLINE | ID: mdl-28198370

ABSTRACT

Small-molecule inhibitor of apoptosis (IAP) antagonists, called Smac mimetic compounds (SMCs), sensitize tumours to TNF-α-induced killing while simultaneously blocking TNF-α growth-promoting activities. SMCs also regulate several immunomodulatory properties within immune cells. We report that SMCs synergize with innate immune stimulants and immune checkpoint inhibitor biologics to produce durable cures in mouse models of glioblastoma in which single agent therapy is ineffective. The complementation of activities between these classes of therapeutics is dependent on cytotoxic T-cell activity and is associated with a reduction in immunosuppressive T-cells. Notably, the synergistic effect is dependent on type I IFN and TNF-α signalling. Furthermore, our results implicate an important role for TNF-α-producing cytotoxic T-cells in mediating the anti-cancer effects of immune checkpoint inhibitors when combined with SMCs. Overall, this combinatorial approach could be highly effective in clinical application as it allows for cooperative and complimentary mechanisms in the immune cell-mediated death of cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Interferon-alpha/immunology , Interferon-beta/immunology , Thiazoles/pharmacology , Adaptive Immunity/drug effects , Animals , Antineoplastic Agents/chemical synthesis , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/mortality , Cell Line, Tumor , Female , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/immunology , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/mortality , Humans , Immunity, Innate/drug effects , Immunologic Memory , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/immunology , Interferon-alpha/genetics , Interferon-alpha/pharmacology , Interferon-beta/genetics , Interferon-beta/pharmacology , Mice , Poly I-C/pharmacology , Signal Transduction , Survival Analysis , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Thiazoles/chemical synthesis , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/pharmacology , Vesiculovirus/genetics , Vesiculovirus/immunology , Xenograft Model Antitumor Assays
11.
Oncotarget ; 8(2): 3495-3508, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-27966453

ABSTRACT

Rhabdomyosarcoma (RMS), a neoplasm characterized by undifferentiated myoblasts, is the most common soft tissue tumour in children. Therapeutic resistance is common in RMS and is often caused by acquired defects in the cellular apoptotic program. Smac mimetic compounds (SMCs) are a novel class of inhibitor of apoptosis (IAP) antagonists that are currently under clinical development as cancer therapeutics. We previously reported that cIAP1 is overexpressed in human primary RMS tumours and in patient-derived RMS cell lines where it drives resistance to apoptosis. In this study, we investigated whether inflammatory cytokine production triggered by activators of innate immunity synergizes with LCL161 to induce bystander killing of RMS cells in vitro and in vivo. Indeed, we show that innate immune stimuli (oncolytic virus (VSVΔ51-GFP), interferon γ (IFNγ), and tumour necrosis factor-like weak inducer of apoptosis (TWEAK)) combine with SMCs in vitro to reduce cell viability in the Kym-1 RMS cancer cell line. Other human RMS cell lines (RH36, RH41, RD, RH18, RH28, and RH30) and the murine RMS cell line 76-9 are resistant to treatment with LCL161 alone or in combination with immune stimulants in in vitro cell viability assays. In contrast, we report that the combination of LCL161 and VSVΔ51-GFP reduces tumour volume and prolongs survival in a 76-9 syngeneic murine model. Our results support further exploration of the combined use of IAP antagonists and innate immune stimuli as a therapeutic approach for RMS cancers.


Subject(s)
Molecular Mimicry , Oncolytic Virotherapy , Oncolytic Viruses , Rhabdomyosarcoma/immunology , Rhabdomyosarcoma/pathology , Thiazoles/pharmacology , Animals , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/immunology , Combined Modality Therapy , Disease Models, Animal , Female , Humans , Immunity, Innate/drug effects , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Mice , Oncolytic Viruses/genetics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/therapy , Tumor Burden , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
12.
Int J Dev Biol ; 59(1-3): 141-7, 2015.
Article in English | MEDLINE | ID: mdl-26374535

ABSTRACT

Members of the inhibitor of apoptosis (IAP) family control several critical aspects of innate immunity, cell death, and tumorigenesis. Small molecule antagonists that target specific IAP oncoproteins, primarily cIAP1 and cIAP2, but potentially also XIAP and Livin, modulate distinct immune signal transduction pathways that can lead to an increased sensitivity of tumors cells to cytokine-mediated apoptosis. These antagonists are based on the structure of an endogenous cellular IAP inhibitor called Smac. Smac is normally sequestered within the mitochondria and is released into the cytoplasm upon cell death stimuli, thereby overcoming the anti-apoptotic action of the IAPs. The therapeutic usefulness of recombinant tumoricidal cytokines to treat cancer patients is principally limited due to their unacceptable adverse side effects. Therefore, investigators have sought to develop alternative regimens that do not rely on exogenously delivered death ligands. These approaches include the stimulation of the immune system with oncolytic virus-based agents or Toll-like receptor agonists in combination with Smac mimetics. Similarly, preclinical combination immunotherapy studies reveal that recombinant interferon synergizes with Smac mimetics to kill cancer. This strategy opens up new therapeutic avenues for anti-cancer therapy by modulating specific immune-mediated death pathways employing unique dual-pronged combinatorial approaches.


Subject(s)
Apoptosis/immunology , Immunotherapy/methods , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/metabolism , Neoplasms/therapy , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/drug effects , Apoptosis Regulatory Proteins , Baculoviral IAP Repeat-Containing 3 Protein , Cytokines/immunology , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , Interferon alpha-2 , Interferon-alpha/therapeutic use , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasms/immunology , Recombinant Proteins/therapeutic use , Signal Transduction/immunology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism
14.
Trends Mol Med ; 20(11): 652-65, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25282548

ABSTRACT

The inhibitor of apoptosis (IAP) family members, notably cIAP1, cIAP2, and XIAP, are critical and universal regulators of tumor necrosis factor (TNF) mediated survival, inflammatory, and death signaling pathways. Furthermore, IAPs mediate the signaling of nucleotide-binding oligomerization domain (NOD)1/NOD2 and other intracellular NOD-like receptors in response to bacterial pathogens. These pathways are important to the pathogenesis and treatment of inflammatory bowel disease (IBD). Inactivating mutations in the X-chromosome-linked IAP (XIAP) gene causes an immunodeficiency syndrome, X-linked lymphoproliferative disease type 2 (XLP2), in which 20% of patients develop severe intestinal inflammation. In addition, 4% of males with early-onset IBD also have inactivating mutations in XIAP. Therefore, the IAPs play a greater role in gut homeostasis, immunity and IBD development than previously suspected, and may have therapeutic potential.


Subject(s)
Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inhibitor of Apoptosis Proteins/genetics , Intestinal Mucosa/metabolism , Intestines/immunology , Animals , Apoptosis/genetics , Apoptosis/immunology , Drug Discovery , Humans , Immunity, Innate , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Molecular Targeted Therapy , Multigene Family , Signal Transduction/drug effects
15.
Oncoimmunology ; 3: e28541, 2014.
Article in English | MEDLINE | ID: mdl-25050221

ABSTRACT

A dual immunotherapy approach employing small-molecule inhibitors of apoptosis (IAP) protein antagonists in combination with innate immune stimuli has proven to be highly synergistic and effective in animal tumor models. This strategy overcomes many of the limitations of either single agent therapy and our results suggest that the combination could be easily and effectively translated to the clinic.

16.
Front Immunol ; 5: 34, 2014.
Article in English | MEDLINE | ID: mdl-24550918

ABSTRACT

Mammalian skeletal muscle maintains a robust regenerative capacity throughout life, largely due to the presence of a stem cell population known as "satellite cells" in the muscle milieu. In normal conditions, these cells remain quiescent; they are activated upon injury to become myoblasts, which proliferate extensively and eventually differentiate and fuse to form new multinucleated muscle fibers. Recent findings have identified some of the factors, including the cytokine TNFα-like weak inducer of apoptosis (TWEAK), which govern these cells' decisions to proliferate, differentiate, or fuse. In this review, we will address the functions of TWEAK, its receptor Fn14, and the associated signal transduction molecule, the cellular inhibitor of apoptosis 1 (cIAP1), in the regulation of myogenesis. TWEAK signaling can activate the canonical NF-κB signaling pathway, which promotes myoblast proliferation and inhibits myogenesis. In addition, TWEAK activates the non-canonical NF-κB pathway, which, in contrast, promotes myogenesis by increasing myoblast fusion. Both pathways are regulated by cIAP1, which is an essential component of downstream signaling mediated by TWEAK and similar cytokines. This review will focus on the seemingly contradictory roles played by TWEAK during muscle regeneration, by highlighting the interplay between the two NF-κB pathways under physiological and pathological conditions. We will also discuss how myogenesis is negatively affected by chronic conditions, which affect homeostasis of the skeletal muscle environment.

17.
Nat Biotechnol ; 32(2): 182-90, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24463573

ABSTRACT

Smac mimetic compounds (SMC), a class of drugs that sensitize cells to apoptosis by counteracting the activity of inhibitor of apoptosis (IAP) proteins, have proven safe in phase 1 clinical trials in cancer patients. However, because SMCs act by enabling transduction of pro-apoptotic signals, SMC monotherapy may be efficacious only in the subset of patients whose tumors produce large quantities of death-inducing proteins such as inflammatory cytokines. Therefore, we reasoned that SMCs would synergize with agents that stimulate a potent yet safe "cytokine storm." Here we show that oncolytic viruses and adjuvants such as poly(I:C) and CpG induce bystander death of cancer cells treated with SMCs that is mediated by interferon beta (IFN-ß), tumor necrosis factor alpha (TNF-α) and/or TNF-related apoptosis-inducing ligand (TRAIL). This combinatorial treatment resulted in tumor regression and extended survival in two mouse models of cancer. As these and other adjuvants have been proven safe in clinical trials, it may be worthwhile to explore their clinical efficacy in combination with SMCs.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/pharmacology , Cell Death/drug effects , Neoplasms, Experimental/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Apoptosis Regulatory Proteins/therapeutic use , Cytokines/metabolism , Drug Synergism , Female , HEK293 Cells , HT29 Cells , Humans , Mice , Mice, Inbred BALB C , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/therapeutic use , Oncolytic Virotherapy , Poly I-C/pharmacology , Poly I-C/therapeutic use
18.
Cancer Lett ; 332(2): 215-24, 2013 May 28.
Article in English | MEDLINE | ID: mdl-22776562

ABSTRACT

XIAP, the X-linked inhibitor of apoptosis, is the best example of an endogenous cellular suppressor of apoptosis. XIAP is effective because it directly limits the activity of several critical death-inducing caspases, notably caspase-3, -7 and -9, either by direct enzyme inhibition or through ubiquitin-mediated proteasomal degradation. Furthermore, XIAP acts simultaneously at several nodes in the apoptotic cascade, blocking both the intrinsic and extrinsic death pathways, and thereby preventing feed-forward amplification loops that would otherwise lead to cell death. XIAP over-expression, or increased activity, is associated with cancer progression, resistance to therapy and poor prognosis. Targeting XIAP gene expression by antisense oligonucleotides, or other approaches, demonstrates anti-cancer effects with XIAP down-regulation. These early preclinical studies led to the development of a clinical candidate mixed-backbone antisense oligonucleotide, AEG35156, against XIAP for the treatment of cancer. Published clinical results for the first-in-class and first-in-human trials of AEG35156 are summarized herein, including single agent and combination chemotherapy phase-I or -II trials for solid tumors, lymphoma, and acute myeloid leukemia. These trials demonstrate the safety of AEG35156, as well as some initial promising signs of anti-cancer activity.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/drug therapy , Oligonucleotides/pharmacology , X-Linked Inhibitor of Apoptosis Protein/metabolism , Animals , Apoptosis , Caspases/metabolism , Cell Survival , Clinical Trials as Topic , Disease Progression , Down-Regulation , Humans , Mice , Neoplasms/genetics , Oligonucleotides, Antisense/pharmacology , Prognosis , Time Factors
19.
Trends Immunol ; 33(11): 535-45, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22836014

ABSTRACT

The inhibitor of apoptosis (IAP) genes are critical regulators of multiple pathways that control cell death, proliferation, and differentiation. Several members of the IAP family regulate innate and adaptive immunity through modulation of signal transduction pathways, cytokine production, and cell survival. The regulation of immunity by the IAPs is primarily mediated through the ubiquitin ligase function of cellular IAP (cIAP)1, cIAP2, and X-linked IAP (XIAP), the targets of which impact nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signalling pathways. In addition, neuronal apoptosis inhibitory protein (NAIP), cIAP1, and cIAP2 modulate innate immune responses through control of the inflammasome complex. This review examines the role of mammalian IAPs in regulating immunity and describes the implications of a new class of pan-IAP antagonists for the treatment of immune disorders.


Subject(s)
Apoptosis , Inhibitor of Apoptosis Proteins/immunology , Signal Transduction , Adaptive Immunity , Animals , Humans , Immunity, Innate , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/genetics , NF-kappa B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...