Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 93(33): 11592-11600, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34383484

ABSTRACT

Breast cancer 1 gene (BRCA1) DNA mutations impact skeletal muscle functions. Inducible skeletal muscle specific Brca1 homozygote knockout (Brca1KOsmi, KO) mice accumulate mitochondrial DNA (mtDNA) mutations resulting in loss of muscle quality.1 Complementary electrochemical andmass spectrometry analyses were utilized to rapidly assess mtDNA or nuclear DNA (nDNA) extracted directly from mouse skeletal muscles. Oxidative peak currents (Ip) from DNA immobilized layer by layer (LbL) were monitored using square-wave voltammetry (SWV) via Ru(bpy)32+ electrocatalysis. Ip significantly decreased (p < 0.05) for KO mtDNA compared to heterozygous KO (Het) or wild type (WT), indicative of decreases in the guanine content. nDNA Ip significantly increased in KO compared to WT (p < 0.05), suggesting an accumulation of damaged nDNA. Guanine or oxidatively damaged guanine content was monitored via appropriate m/z mass transitions using liquid chromatography-tandem mass spectroscopy (LC-MS/MS). Guanine in both KO mtDNA and nDNA was significantly lower, while oxidatively damaged guanine in KO nDNA was significantly elevated versus WT. These data demonstrate a loss of guanine content consistent with mtDNA mutation accumulation. Oxidative damage in KO nDNA suggests that repair processes associated with Brca1 are impacted. Overall, electrochemical and LC-MS/MS analysis can provide chemical-level answers to biological model phenotypic responses as a rapid and cost-effective analysis alternative to established assays.


Subject(s)
Genes, BRCA1 , Tandem Mass Spectrometry , Animals , Chromatography, Liquid , DNA, Mitochondrial/genetics , Mice , Muscle, Skeletal
2.
Exerc Sport Sci Rev ; 49(4): 267-273, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34091499

ABSTRACT

Breast Cancer gene 1 (BRCA1) is a large, multifunctional protein that regulates a variety of mechanisms in multiple different tissues. Our work established that Brca1 is expressed in skeletal muscle and localizes to the mitochondria and nucleus. Here, we propose BRCA1 expression is critical for the maintenance of force production and mitochondrial respiration in skeletal muscle.


Subject(s)
Breast Neoplasms , Muscle, Skeletal , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/genetics , Female , Genomic Instability , Humans , Mitochondria , Muscle, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL