Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 12(15): 2820-2828, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34291630

ABSTRACT

Transient disruption of the blood-brain barrier (BBB) with focused ultrasound (FUS) is an emerging clinical method to facilitate targeted drug delivery to the brain. The focal noninvasive disruption of the BBB can be applied to promote the local delivery of hyperpolarized substrates. In this study, we investigated the effects of FUS on imaging brain metabolism using two hyperpolarized 13C-labeled substrates in rodents: [1-13C]pyruvate and [1-13C]glycerate. The BBB is a rate-limiting factor for pyruvate delivery to the brain, and glycerate minimally passes through the BBB. First, cerebral imaging with hyperpolarized [1-13C]pyruvate resulted in an increase in total 13C signals (p = 0.05) after disrupting the BBB with FUS. Significantly higher levels of both [1-13C]lactate (lactate/total 13C signals, p = 0.01) and [13C]bicarbonate (p = 0.008) were detected in the FUS-applied brain region as compared to the contralateral FUS-unaffected normal-appearing brain region. The application of FUS without opening the BBB in a separate group of rodents resulted in comparable lactate and bicarbonate productions between the FUS-applied and the contralateral brain regions. Second, 13C imaging with hyperpolarized [1-13C]glycerate after opening the BBB showed increased [1-13C]glycerate delivery to the FUS-applied region (p = 0.04) relative to the contralateral side, and [1-13C]lactate production was consistently detected from the FUS-applied region. Our findings suggest that FUS accelerates the delivery of hyperpolarized molecules across the BBB and provides enhanced sensitivity to detect metabolic products in the brain; therefore, hyperpolarized 13C imaging with FUS may provide new opportunities to study cerebral metabolic pathways as well as various neurological pathologies.


Subject(s)
Blood-Brain Barrier , Brain , Animals , Biological Transport , Brain/diagnostic imaging , Drug Delivery Systems , Magnetic Resonance Imaging , Pyruvic Acid , Rats , Rats, Sprague-Dawley
2.
Anal Sens ; 1(4): 196-202, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35693130

ABSTRACT

The interplay between glycolysis and gluconeogenesis is central to carbohydrate metabolism. Here, we describe novel methods to assess carbohydrate metabolism using [13C]-probes derived from glycerate, a molecule whose metabolic fate in mammals remains underexplored. Isotope-based studies were conducted via NMR and mass spectrometry analyses of freeze-clamped liver tissue extracts after [2,3-13C2]glycerate infusion. The ex vivo investigations were correlated with in vivo measurements using hyperpolarized [1-13C]glycerate. Application of [13C]glycerate to N-nitrosodiethylamine (DEN)-treated rats provided further assessments of intermediary carbohydrate metabolism in hepatocellular carcinoma. This method afforded direct analyses of control versus DEN tissues, and altered ratios of 13C metabolic products as well as unique glycolysis intermediates were observed in the DEN liver/tumor. Isotopomer studies showed increased glycerate uptake and altered carbohydrate metabolism in the DEN rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...