Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
2.
JAMA ; 330(4): 328-339, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37428480

ABSTRACT

Importance: Immune dysregulation contributes to poorer outcomes in COVID-19. Objective: To investigate whether abatacept, cenicriviroc, or infliximab provides benefit when added to standard care for COVID-19 pneumonia. Design, Setting, and Participants: Randomized, double-masked, placebo-controlled clinical trial using a master protocol to investigate immunomodulators added to standard care for treatment of participants hospitalized with COVID-19 pneumonia. The results of 3 substudies are reported from 95 hospitals at 85 clinical research sites in the US and Latin America. Hospitalized patients 18 years or older with confirmed SARS-CoV-2 infection within 14 days and evidence of pulmonary involvement underwent randomization between October 2020 and December 2021. Interventions: Single infusion of abatacept (10 mg/kg; maximum dose, 1000 mg) or infliximab (5 mg/kg) or a 28-day oral course of cenicriviroc (300-mg loading dose followed by 150 mg twice per day). Main Outcomes and Measures: The primary outcome was time to recovery by day 28 evaluated using an 8-point ordinal scale (higher scores indicate better health). Recovery was defined as the first day the participant scored at least 6 on the ordinal scale. Results: Of the 1971 participants randomized across the 3 substudies, the mean (SD) age was 54.8 (14.6) years and 1218 (61.8%) were men. The primary end point of time to recovery from COVID-19 pneumonia was not significantly different for abatacept (recovery rate ratio [RRR], 1.12 [95% CI, 0.98-1.28]; P = .09), cenicriviroc (RRR, 1.01 [95% CI, 0.86-1.18]; P = .94), or infliximab (RRR, 1.12 [95% CI, 0.99-1.28]; P = .08) compared with placebo. All-cause 28-day mortality was 11.0% for abatacept vs 15.1% for placebo (odds ratio [OR], 0.62 [95% CI, 0.41-0.94]), 13.8% for cenicriviroc vs 11.9% for placebo (OR, 1.18 [95% CI 0.72-1.94]), and 10.1% for infliximab vs 14.5% for placebo (OR, 0.59 [95% CI, 0.39-0.90]). Safety outcomes were comparable between active treatment and placebo, including secondary infections, in all 3 substudies. Conclusions and Relevance: Time to recovery from COVID-19 pneumonia among hospitalized participants was not significantly different for abatacept, cenicriviroc, or infliximab vs placebo. Trial Registration: ClinicalTrials.gov Identifier: NCT04593940.


Subject(s)
COVID-19 , Male , Humans , Adult , Middle Aged , Female , Abatacept , Infliximab , SARS-CoV-2 , Pandemics
3.
Nat Rev Drug Discov ; 22(3): 235-250, 2023 03.
Article in English | MEDLINE | ID: mdl-36792750

ABSTRACT

The pharmaceutical industry and its global regulators have routinely used frequentist statistical methods, such as null hypothesis significance testing and p values, for evaluation and approval of new treatments. The clinical drug development process, however, with its accumulation of data over time, can be well suited for the use of Bayesian statistical approaches that explicitly incorporate existing data into clinical trial design, analysis and decision-making. Such approaches, if used appropriately, have the potential to substantially reduce the time and cost of bringing innovative medicines to patients, as well as to reduce the exposure of patients in clinical trials to ineffective or unsafe treatment regimens. Nevertheless, despite advances in Bayesian methodology, the availability of the necessary computational power and growing amounts of relevant existing data that could be used, Bayesian methods remain underused in the clinical development and regulatory review of new therapies. Here, we highlight the value of Bayesian methods in drug development, discuss barriers to their application and recommend approaches to address them. Our aim is to engage stakeholders in the process of considering when the use of existing data is appropriate and how Bayesian methods can be implemented more routinely as an effective tool for doing so.


Subject(s)
Drug Industry , Research Design , Humans , Bayes Theorem
4.
Pain Med ; 24(Suppl 1): S3-S12, 2023 08 04.
Article in English | MEDLINE | ID: mdl-36622041

ABSTRACT

In 2019, the National Health Interview survey found that nearly 59% of adults reported pain some, most, or every day in the past 3 months, with 39% reporting back pain, making back pain the most prevalent source of pain, and a significant issue among adults. Often, identifying a direct, treatable cause for back pain is challenging, especially as it is often attributed to complex, multifaceted issues involving biological, psychological, and social components. Due to the difficulty in treating the true cause of chronic low back pain (cLBP), an over-reliance on opioid pain medications among cLBP patients has developed, which is associated with increased prevalence of opioid use disorder and increased risk of death. To combat the rise of opioid-related deaths, the National Institutes of Health (NIH) initiated the Helping to End Addiction Long-TermSM (HEAL) initiative, whose goal is to address the causes and treatment of opioid use disorder while also seeking to better understand, diagnose, and treat chronic pain. The NIH Back Pain Consortium (BACPAC) Research Program, a network of 14 funded entities, was launched as a part of the HEAL initiative to help address limitations surrounding the diagnosis and treatment of cLBP. This paper provides an overview of the BACPAC research program's goals and overall structure, and describes the harmonization efforts across the consortium, define its research agenda, and develop a collaborative project which utilizes the strengths of the network. The purpose of this paper is to serve as a blueprint for other consortia tasked with the advancement of pain related science.


Subject(s)
Chronic Pain , Low Back Pain , Opioid-Related Disorders , Adult , Humans , Research Design , Analgesics, Opioid/therapeutic use , Advisory Committees , Pain Measurement/methods , Chronic Pain/epidemiology , Low Back Pain/diagnosis , Low Back Pain/therapy , Opioid-Related Disorders/epidemiology , Opioid-Related Disorders/therapy
5.
medRxiv ; 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36203544

ABSTRACT

Background: We investigated whether abatacept, a selective costimulation modulator, provides additional benefit when added to standard-of-care for patients hospitalized with Covid-19. Methods: We conducted a master protocol to investigate immunomodulators for potential benefit treating patients hospitalized with Covid-19 and report results for abatacept. Intravenous abatacept (one-time dose 10 mg/kg, maximum dose 1000 mg) plus standard of care (SOC) was compared with shared placebo plus SOC. Primary outcome was time-to-recovery by day 28. Key secondary endpoints included 28-day mortality. Results: Between October 16, 2020 and December 31, 2021, a total of 1019 participants received study treatment (509 abatacept; 510 shared placebo), constituting the modified intention-to-treat cohort. Participants had a mean age 54.8 (SD 14.6) years, 60.5% were male, 44.2% Hispanic/Latino and 13.7% Black. No statistically significant difference for the primary endpoint of time-to-recovery was found with a recovery-rate-ratio of 1.14 (95% CI 1.00-1.29; p=0.057) compared with placebo. We observed a substantial improvement in 28-day all-cause mortality with abatacept versus placebo (11.0% vs. 15.1%; odds ratio [OR] 0.62 [95% CI 0.41- 0.94]), leading to 38% lower odds of dying. Improvement in mortality occurred for participants requiring oxygen/noninvasive ventilation at randomization. Subgroup analysis identified the strongest effect in those with baseline C-reactive protein >75mg/L. We found no statistically significant differences in adverse events, with safety composite index slightly favoring abatacept. Rates of secondary infections were similar (16.1% for abatacept; 14.3% for placebo). Conclusions: Addition of single-dose intravenous abatacept to standard-of-care demonstrated no statistically significant change in time-to-recovery, but improved 28-day mortality. Trial registration: ClinicalTrials.gov ( NCT04593940 ).

6.
medRxiv ; 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36172138

ABSTRACT

Background: Immune dysregulation contributes to poorer outcomes in severe Covid-19. Immunomodulators targeting various pathways have improved outcomes. We investigated whether infliximab provides benefit over standard of care. Methods: We conducted a master protocol investigating immunomodulators for potential benefit in treatment of participants hospitalized with Covid-19 pneumonia. We report results for infliximab (single dose infusion) versus shared placebo both with standard of care. Primary outcome was time to recovery by day 29 (28 days after randomization). Key secondary endpoints included 14-day clinical status and 28-day mortality. Results: A total of 1033 participants received study drug (517 infliximab, 516 placebo). Mean age was 54.8 years, 60.3% were male, 48.6% Hispanic or Latino, and 14% Black. No statistically significant difference in the primary endpoint was seen with infliximab compared with placebo (recovery rate ratio 1.13, 95% CI 0.99-1.29; p=0.063). Median (IQR) time to recovery was 8 days (7, 9) for infliximab and 9 days (8, 10) for placebo. Participants assigned to infliximab were more likely to have an improved clinical status at day 14 (OR 1.32, 95% CI 1.05-1.66). Twenty-eight-day mortality was 10.1% with infliximab versus 14.5% with placebo, with 41% lower odds of dying in those receiving infliximab (OR 0.59, 95% CI 0.39-0.90). No differences in risk of serious adverse events including secondary infections. Conclusions: Infliximab did not demonstrate statistically significant improvement in time to recovery. It was associated with improved 14-day clinical status and substantial reduction in 28- day mortality compared with standard of care. Trial registration: ClinicalTrials.gov ( NCT04593940 ).

7.
J Allergy Clin Immunol ; 149(2): 488-516.e9, 2022 02.
Article in English | MEDLINE | ID: mdl-34848210

ABSTRACT

Asthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation-prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here, we describe the Precision Interventions for Severe and/or Exacerbation-Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the United States. The PrecISE Network was designed to conduct phase II/proof-of-concept clinical trials of precision interventions in the population with severe asthma, and is supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the PrecISE Network will evaluate up to 6 interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the PrecISE Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for severe asthma.


Subject(s)
Asthma/drug therapy , Precision Medicine , Advisory Committees , Asthma/diagnosis , Biomarkers , Clinical Protocols , Clinical Trials, Phase II as Topic , Humans , Research Design , Severity of Illness Index , Tomography, X-Ray Computed
8.
Stat Biopharm Res ; 14(1): 22-27, 2022.
Article in English | MEDLINE | ID: mdl-37006380

ABSTRACT

The coronavirus pandemic has brought public attention to the steps required to produce valid scientific clinical research in drug development. Traditional ethical principles that guide clinical research remain the guiding compass for physicians, patients, public health officials, investigators, drug developers and the public. Accelerating the process of delivering safe and effective treatments and vaccines against COVID-19 is a moral imperative. The apparent clash between the regulated system of phased randomized clinical trials and urgent public health need requires leveraging innovation with ethical scientific rigor. We reflect on the Belmont principles of autonomy, beneficence and justice as the pandemic unfolds, and illustrate the role of innovative clinical trial designs in alleviating pandemic challenges. Our discussion highlights selected types of innovative trial design and correlates them with ethical parameters and public health benefits. Details are provided for platform trials and other innovative designs such as basket and umbrella trials, designs leveraging external data sources, multi-stage seamless trials, preplanned control arm data sharing between larger trials, and higher order systems of linked trials coordinated more broadly between individual trials and phases of development, recently introduced conceptually as "PIPELINEs."

9.
Lancet Respir Med ; 10(1): 107-120, 2022 01.
Article in English | MEDLINE | ID: mdl-34310901

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome. Understanding of the complex pathways involved in lung injury pathogenesis, resolution, and repair has grown considerably in recent decades. Nevertheless, to date, only therapies targeting ventilation-induced lung injury have consistently proven beneficial, and despite these gains, ARDS morbidity and mortality remain high. Many candidate therapies with promise in preclinical studies have been ineffective in human trials, probably at least in part due to clinical and biological heterogeneity that modifies treatment responsiveness in human ARDS. A precision medicine approach to ARDS seeks to better account for this heterogeneity by matching therapies to subgroups of patients that are anticipated to be most likely to benefit, which initially might be identified in part by assessing for heterogeneity of treatment effect in clinical trials. In October 2019, the US National Heart, Lung, and Blood Institute convened a workshop of multidisciplinary experts to explore research opportunities and challenges for accelerating precision medicine in ARDS. Topics of discussion included the rationale and challenges for a precision medicine approach in ARDS, the roles of preclinical ARDS models in precision medicine, essential features of cohort studies to advance precision medicine, and novel approaches to clinical trials to support development and validation of a precision medicine strategy. In this Position Paper, we summarise workshop discussions, recommendations, and unresolved questions for advancing precision medicine in ARDS. Although the workshop took place before the COVID-19 pandemic began, the pandemic has highlighted the urgent need for precision therapies for ARDS as the global scientific community grapples with many of the key concepts, innovations, and challenges discussed at this workshop.


Subject(s)
Precision Medicine , Respiratory Distress Syndrome , COVID-19 , Humans , Respiratory Distress Syndrome/therapy
10.
Ann Intern Med ; 174(9): 1293-1300, 2021 09.
Article in English | MEDLINE | ID: mdl-34181444

ABSTRACT

Working in an unprecedented time frame, the Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) public-private partnership developed and launched 9 master protocols between 14 April 2020 and 31 May 2021 to allow for the coordinated and efficient evaluation of multiple investigational therapeutic agents for COVID-19. The ACTIV master protocols were designed with a portfolio approach to serve the following patient populations with COVID-19: mild to moderately ill outpatients, moderately ill inpatients, and critically ill inpatients. To facilitate the execution of these studies and minimize start-up time, ACTIV selected several existing networks to launch the master protocols. The master protocols were also designed to test several agent classes prioritized by ACTIV that covered the spectrum of the disease pathophysiology. Each protocol, either adaptive or pragmatic, was designed to efficiently select those treatments that provide benefit to patients while rapidly eliminating those that were either ineffective or unsafe. The ACTIV Therapeutics-Clinical Working Group members describe the process by which these master protocols were designed, developed, and launched. Lessons learned that may be useful in meeting the challenges of a future pandemic are also described.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 Vaccines , COVID-19/prevention & control , Clinical Protocols , Drug Development/organization & administration , Public-Private Sector Partnerships , Humans , National Institutes of Health (U.S.) , Pandemics/prevention & control , SARS-CoV-2 , United States
12.
J Allergy Clin Immunol ; 147(5): 1594-1601, 2021 05.
Article in English | MEDLINE | ID: mdl-33667479

ABSTRACT

Severe asthma accounts for almost half the cost associated with asthma. Severe asthma is driven by heterogeneous molecular mechanisms. Conventional clinical trial design often lacks the power and efficiency to target subgroups with specific pathobiological mechanisms. Furthermore, the validation and approval of new asthma therapies is a lengthy process. A large proportion of that time is taken by clinical trials to validate asthma interventions. The National Institutes of Health Precision Medicine in Severe and/or Exacerbation Prone Asthma (PrecISE) program was established with the goal of designing and executing a trial that uses adaptive design techniques to rapidly evaluate novel interventions in biomarker-defined subgroups of severe asthma, while seeking to refine these biomarker subgroups, and to identify early markers of response to therapy. The novel trial design is an adaptive platform trial conducted under a single master protocol that incorporates precision medicine components. Furthermore, it includes innovative applications of futility analysis, cross-over design with use of shared placebo groups, and early futility analysis to permit more rapid identification of effective interventions. The development and rationale behind the study design are described. The interventions chosen for the initial investigation and the criteria used to identify these interventions are enumerated. The biomarker-based adaptive design and analytic scheme are detailed as well as special considerations involved in the final trial design.


Subject(s)
Asthma , Biomarkers , Precision Medicine , Randomized Controlled Trials as Topic , Humans , Research Design
13.
J Biopharm Stat ; 30(6): 1026-1037, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32941098

ABSTRACT

The Precision Interventions for Severe and/or Exacerbation-prone Asthma (PrecISE) study is an adaptive platform trial designed to investigate novel interventions to severe asthma. The study is conducted under a master protocol and utilizes a crossover design with each participant receiving up to five interventions and at least one placebo. Treatment assignments are based on the patients' biomarker profiles and precision health methods are incorporated into the interim and final analyses. We describe key elements of the PrecISE study including the multistage adaptive enrichment strategy, early stopping of an intervention for futility, power calculations, and the primary analysis strategy.


Subject(s)
Asthma , Asthma/diagnosis , Asthma/drug therapy , Biomarkers , Humans , Research Design
15.
Biom J ; 61(5): 1232-1241, 2019 09.
Article in English | MEDLINE | ID: mdl-30589102

ABSTRACT

Data Monitoring Committees (DMCs) are an integral part of clinical drug development. Their use has evolved along with changing study designs and regulatory expectations, which has associated statistical and ethical implications. Although there is guidance from the different regulatory agencies, there are opportunities to bring more consistency to address practical issues of establishing and operating a DMC. Challenging issues include defining the scope of DMC decisions, the regulatory requirements and expectations, the perceived independence of DMCs, the specific focus primarily on safety, etc. Wider use of adaptive clinical trial designs in recent years introduce additional challenges in terms of trial governance and the complexity of DMC activities. A panel comprised of clinical and statistical experts from across academia, industry, and regulatory agencies shared their experience and thoughts on the importance of these aspects and offered perspectives on the future of the DMCs. This paper documents the thinking from the panel session at the CEN-ISBS conference held in Vienna, Austria, 2017.


Subject(s)
Clinical Trials Data Monitoring Committees/economics , Clinical Trials Data Monitoring Committees/legislation & jurisprudence , Social Control, Formal , Clinical Trials Data Monitoring Committees/organization & administration , Guidelines as Topic , Humans
16.
Clin Pharmacol Ther ; 104(2): 282-289, 2018 08.
Article in English | MEDLINE | ID: mdl-29473145

ABSTRACT

Advances in our understanding of the molecular underpinnings of disease have spurred the development of targeted therapies and the use of precision medicine approaches in patient care. While targeted therapies have improved our capability to provide effective treatments to patients, they also present additional challenges to drug development and benefit-risk assessment such as identifying the subset(s) of patients likely to respond to the drug, assessing heterogeneity in response across molecular subsets of a disease, and developing diagnostic tests to identify patients for treatment. These challenges are particularly difficult to address when targeted therapies are developed to treat diseases with multiple molecular subtypes that occur at low frequencies. To help address these challenges, the US Food and Drug Administration recently published a draft guidance entitled "Developing Targeted Therapies in Low-Frequency Molecular Subsets of a Disease." Here we provide additional information on specific aspects of targeted therapy development in diseases with low-frequency molecular subsets.


Subject(s)
Gene Frequency , Genetic Predisposition to Disease , Molecular Targeted Therapy/methods , Mutation Rate , Precision Medicine/methods , Animals , Clinical Trials as Topic , Drug Evaluation, Preclinical , Evidence-Based Medicine , Humans , Phenotype , United States , United States Food and Drug Administration
19.
Am J Respir Crit Care Med ; 196(8): 993-1003, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28613924

ABSTRACT

RATIONALE: Accurate reference values for spirometry are important because the results are used for diagnosing common chronic lung diseases such as asthma and chronic obstructive pulmonary disease, estimating physiologic impairment, and predicting all-cause mortality. Reference equations have been established for Mexican Americans but not for others with Hispanic/Latino backgrounds. OBJECTIVES: To develop spirometry reference equations for adult Hispanic/Latino background groups in the United States. METHODS: The HCHS/SOL (Hispanic Community Health Study/Study of Latinos) recruited a population-based probability sample of 16,415 Hispanics/Latinos aged 18-74 years living in the Bronx, Chicago, Miami, and San Diego. Participants self-identified as being of Puerto Rican, Cuban, Dominican, Mexican, or Central or South American background. Spirometry was performed using standardized methods with central quality control monitoring. Spirometric measures from a subset of 6,425 never-smoking participants without respiratory symptoms or disease were modeled as a function of sex, age, height, and Hispanic/Latino background to produce background-specific reference equations for the predicted value and lower limit of normal. MEASUREMENTS AND MAIN RESULTS: Dominican and Puerto Rican Americans had substantially lower predicted and lower limit of normal values for FVC and FEV1 than those in other Hispanic/Latino background groups and also than Mexican American values from NHANES III (Third National Health and Nutrition Examination Survey). CONCLUSIONS: For patients of Dominican and Puerto Rican background who present with pulmonary symptoms in clinical practice, use of background-specific spirometry reference equations may provide more appropriate predicted and lower limit of normal values, enabling more accurate diagnoses of abnormality and physiologic impairment.


Subject(s)
Emigrants and Immigrants , Lung Diseases/diagnosis , Lung Diseases/ethnology , Reference Standards , Adolescent , Adult , Aged , Central America , Female , Hispanic or Latino , Humans , Male , Mexican Americans , Mexico , Middle Aged , South America , Spirometry , United States/ethnology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...