Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 228(6): 723-733, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37279654

ABSTRACT

The emergence of novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need to investigate alternative approaches to prevent infection and treat patients with coronavirus disease 2019. Here, we report the preclinical efficacy of NL-CVX1, a de novo decoy that blocks virus entry into cells by binding with nanomolar affinity and high specificity to the receptor-binding domain of the SARS-CoV-2 spike protein. Using a transgenic mouse model of SARS-CoV-2 infection, we showed that a single prophylactic intranasal dose of NL-CVX1 conferred complete protection from severe disease following SARS-CoV-2 infection. Multiple therapeutic administrations of NL-CVX1 also protected mice from succumbing to infection. Finally, we showed that infected mice treated with NL-CVX1 developed both anti-SARS-CoV-2 antibodies and memory T cells and were protected against reinfection a month after treatment. Overall, these observations suggest NL-CVX1 is a promising therapeutic candidate for preventing and treating severe SARS-CoV-2 infections.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/prevention & control , Mice, Transgenic , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
ACS Pharmacol Transl Sci ; 5(11): 1156-1168, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36407952

ABSTRACT

Bruton's tyrosine kinase (BTK) is a member of the TEC-family kinases and crucial for the proliferation and differentiation of B-cells. We evaluated the therapeutic potential of a covalent inhibitor (JS25) with nanomolar potency against BTK and with a more desirable selectivity and inhibitory profile compared to the FDA-approved BTK inhibitors ibrutinib and acalabrutinib. Structural prediction of the BTK/JS25 complex revealed sequestration of Tyr551 that leads to BTK's inactivation. JS25 also inhibited the proliferation of myeloid and lymphoid B-cell cancer cell lines. Its therapeutic potential was further tested against ibrutinib in preclinical models of B-cell cancers. JS25 treatment induced a more pronounced cell death in a murine xenograft model of Burkitt's lymphoma, causing a 30-40% reduction of the subcutaneous tumor and an overall reduction in the percentage of metastasis and secondary tumor formation. In a patient model of diffuse large B-cell lymphoma, the drug response of JS25 was higher than that of ibrutinib, leading to a 64% "on-target" efficacy. Finally, in zebrafish patient-derived xenografts of chronic lymphocytic leukemia, JS25 was faster and more effective in decreasing tumor burden, producing superior therapeutic effects compared to ibrutinib. We expect JS25 to become therapeutically relevant as a BTK inhibitor and to find applications in the treatment of hematological cancers and other pathologies with unmet clinical treatment.

3.
Nature ; 565(7738): 186-191, 2019 01.
Article in English | MEDLINE | ID: mdl-30626941

ABSTRACT

We describe a de novo computational approach for designing proteins that recapitulate the binding sites of natural cytokines, but are otherwise unrelated in topology or amino acid sequence. We use this strategy to design mimics of the central immune cytokine interleukin-2 (IL-2) that bind to the IL-2 receptor ßγc heterodimer (IL-2Rßγc) but have no binding site for IL-2Rα (also called CD25) or IL-15Rα (also known as CD215). The designs are hyper-stable, bind human and mouse IL-2Rßγc with higher affinity than the natural cytokines, and elicit downstream cell signalling independently of IL-2Rα and IL-15Rα. Crystal structures of the optimized design neoleukin-2/15 (Neo-2/15), both alone and in complex with IL-2Rßγc, are very similar to the designed model. Neo-2/15 has superior therapeutic activity to IL-2 in mouse models of melanoma and colon cancer, with reduced toxicity and undetectable immunogenicity. Our strategy for building hyper-stable de novo mimetics could be applied generally to signalling proteins, enabling the creation of superior therapeutic candidates.


Subject(s)
Drug Design , Interleukin-15/immunology , Interleukin-2/immunology , Molecular Mimicry , Receptors, Interleukin-2/agonists , Receptors, Interleukin-2/immunology , Amino Acid Sequence , Animals , Binding Sites , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Computer Simulation , Crystallography, X-Ray , Disease Models, Animal , Humans , Interleukin-15/therapeutic use , Interleukin-2/therapeutic use , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Melanoma/drug therapy , Melanoma/immunology , Mice , Models, Molecular , Protein Stability , Receptors, Interleukin-2/metabolism , Signal Transduction/immunology
4.
Chemistry ; 24(47): 12250-12253, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-29729206

ABSTRACT

Targeted delivery of potent cytotoxic drugs to cancer cells minimizes systemic toxicity and several side effects. NHC*-Au-Cl has already been proven to be a potent anticancer agent. In this study, we explore a strategy based on chemoselective cysteine conjugation of NHC*-Au-Cl to albumin and trastuzumab (Thiomab LC-V205C) to potentiate drug-ligand ratio, pharmacokinetics, as well as drug efficacy and safety. This strategy is a step forward towards the use of gold-based anticancer agents as targeted therapies.


Subject(s)
Antineoplastic Agents/chemical synthesis , Gold/chemistry , Imidazolines/chemistry , Serum Albumin/chemistry , Sulfhydryl Compounds/chemistry , Trastuzumab/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cysteine/chemistry , Drug Carriers/chemistry , Half-Life , Humans , Trastuzumab/pharmacology
5.
J Immunol ; 196(12): 5148-55, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27183576

ABSTRACT

Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines.


Subject(s)
Intestine, Small/immunology , Lymphocyte Subsets/immunology , Lymphoid Tissue/immunology , Vitamin A Deficiency/immunology , Vitamin A/metabolism , Animals , Antigens, Ly/genetics , Antigens, Ly/immunology , Immunity, Innate , Intestine, Small/cytology , Intestine, Small/drug effects , Lymphocyte Subsets/drug effects , Lymphoid Tissue/cytology , Lymphoid Tissue/drug effects , Lymphoid Tissue/metabolism , Mice , Natural Cytotoxicity Triggering Receptor 1/deficiency , Natural Cytotoxicity Triggering Receptor 1/genetics , Natural Cytotoxicity Triggering Receptor 1/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/analysis , Signal Transduction , Tretinoin/metabolism , Vitamin A/administration & dosage
6.
Eur J Immunol ; 44(12): 3605-13, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25168352

ABSTRACT

T helper (Th) cells are critical players in the modulation of immune response outcomes. Activation of Th cells gives rise to various subsets of effector cells that are controlled via specialised regulatory T cells or through self-regulation via production of IL-10. However, the environmental factors that regulate IL-10 production by Th cells remain poorly understood. Here, we show that the neurotrophic factor receptor rearranged during transfection (RET) downregulates IL-10 production by Th cells from C57BL/6 mice. We found that effector Th cells express RET and that RET's neurotrophic factor partners are mainly produced by LN stromal cells, allowing context-dependent Th-cell regulation. Despite being dispensable for Th-cell homeostasis, RET controls IL-10 production in Th2 cells: RET-deficient Th cells exhibited increased IL-10 production, while triggering of Th1/2 cells with neurotrophic factors, namely glial-derived neurotrophic factor and neurturin, decreased the expression of IL-10. In agreement, the important IL-10 transcription factor Maf was upregulated in RET-deficient Th2 cells and down-regulated upon RET signalling activation by glial-derived neurotrophic factor family ligands. Thus, our study uncovers neurotrophic factors as novel regulators of Th-cell function, revealing that Th cells and neurons can be regulated by similar signals in tissue-specific responses.


Subject(s)
Interleukin-10/immunology , Neurturin/immunology , Proto-Oncogene Proteins c-ret/immunology , Signal Transduction/immunology , Th2 Cells/immunology , Animals , Interleukin-10/genetics , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Knockout , Neuroglia/cytology , Neuroglia/immunology , Neurons/cytology , Neurons/immunology , Neurturin/genetics , Proto-Oncogene Proteins c-ret/genetics , Signal Transduction/genetics , Stromal Cells/cytology , Stromal Cells/immunology , Th1 Cells/cytology , Th1 Cells/immunology , Th2 Cells/cytology
7.
Nature ; 508(7494): 123-7, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24670648

ABSTRACT

The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.


Subject(s)
Fetus/immunology , Immunity, Innate/immunology , Prenatal Exposure Delayed Effects/immunology , Tretinoin/immunology , Tretinoin/pharmacology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Diet , Female , Fetus/drug effects , Immunity, Innate/drug effects , Lymphoid Tissue/cytology , Lymphoid Tissue/drug effects , Lymphoid Tissue/embryology , Lymphoid Tissue/immunology , Mice , Mice, Inbred C57BL , Pregnancy , Receptors, Retinoic Acid/metabolism , Signal Transduction/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/immunology , Tretinoin/administration & dosage , Tretinoin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...