ABSTRACT
Spatial-temporal monitoring of the presence of pesticides and pharmaceuticals in water requires rigor in the choice of matrix to be analyzed. The use of matrices, isolated or combined, may better represent the real state of contamination. In this sense, the present work contrasted the effectiveness of using epilithic biofilms with active water sampling and with a passive sampler-POCIS. A watershed representative of South American agriculture was monitored. Nine sites with different rural anthropic pressures (natural forest, intensive use of pesticides, and animal waste), and urban areas without sewage treatment, were monitored. Water and epilithic biofilms were collected during periods of intensive pesticide and animal waste application. After the harvest of the spring/summer crop, a period of low agrochemical input, the presence of pesticides and pharmaceuticals was monitored using the POCIS and epilithic biofilms. The spot water sampling leads to underestimation of the level of contamination of water resources as it does not allow discrimination of different anthropic pressures in rural areas. The use of endogenous epilithic biofilms as a matrix for the analysis of pesticides and pharmaceuticals is a viable and highly recommended alternative to diagnose the health of water sources, especially if associated with the use of POCIS.
Subject(s)
Pesticides , Water Pollutants, Chemical , Pesticides/analysis , Brazil , Information Sources , Environmental Monitoring , Water Pollutants, Chemical/analysis , Biofilms , Pharmaceutical Preparations , RiversABSTRACT
The continuous discharge of pharmaceutical compounds into the aquatic environment has raised concerns over the contamination of water resources. Urban activities and intensive animal breeding are important sources of contamination. The accumulation of antibiotics may lead to the transfer or alternatively maintain the presence of resistance genes in natural microbial communities existing in epilithic biofilms. The objective of this study was to evaluate the pharmaceutical contamination levels and the presence of resistance genes in biofilms from a South Brazilian watershed. The Guaporé watershed exhibits a high diversity of land use, including agricultural and urban areas with differing levels of anthropogenic pressure. Seventeen sites along the Guaporé watershed were monitored. Biofilm samples were collected in two seasons (winter and summer), and the pharmaceutical concentration and quantity of resistance genes were analyzed. All monitored sites were contaminated with pharmaceuticals. Agricultural activities contribute through transferring pharmaceuticals derived from the application of animal waste to agricultural fields. The most contaminated site (pharmaceuticals and bacterial resistance genes) was located in an urban area exposed to high pressure. Decreases in the contamination of biofilms were also observed, exemplifying processes of natural attenuation in the watershed. The quality of the biofilms sampled throughout the watershed served as a useful tool to understand and monitor environmental pollution.
Subject(s)
Rivers , Water Pollutants, Chemical , Animals , Rivers/microbiology , Environmental Monitoring , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Biofilms , Pharmaceutical PreparationsABSTRACT
Active functional groups in biofilms determine the adsorption and desorption of contaminants and nutrients. Epilithic biofilms were characterized in order to understand the association between the chemistry alteration patterns and the surrounding anthropic activities of the Guaporé River watershed. The instrumental analyses included pyrolysis coupled to gas chromatography and mass spectroscopy, spectroscopy in the IR region with attenuated total reflectance, and two-dimensional nuclear magnetic resonance. Spectrometric techniques demonstrated that epilithic biofilms are mainly composed of polysaccharides, nitrogen-containing compounds, lipids, and aromatic and phenolic structures, which have functional groups characteristic of alcohols, esters, ethers, and amides. The polysaccharide levels reflect well the environmental pressures. The chemical composition of epilithic biofilms can be an effective tool for environmental assessment in watercourses, since the different anthropic actions developed in watersheds, mainly agriculture and urban areas, can modify the organic fraction of biofilms.
Subject(s)
Agriculture , Rivers , Biofilms , Brazil , Environmental Monitoring , Gas Chromatography-Mass SpectrometryABSTRACT
The fate of pharmaceuticals during the treatment of effluents is of major concern since they are not completely degraded and because of their persistence and mobility in environment. Indeed, even at low concentrations, they represent a risk to aquatic life and human health. In this work, fourteen pharmaceuticals were monitored in a constructed wetland wastewater treatment plants (WWTP) assessed in both influent and effluent samples. The basic water quality parameters were evaluated, and the removal efficiency of pharmaceutical, potential for bioaccumulation, and the impact of WWTP were assessed using Polar Organic Chemical Integrative Sampler (POCIS) and biofilms. The pharmaceutical compounds were quantified by High Performance Liquid chromatography coupled to mass spectrometry. The sampling campaign was carried out during winter (July/2018) and summer (January/2019). The WWTP performed well regarding the removal of TSS, COD, and BOD5 and succeeded to eliminate a significant part of the organic and inorganic pollution present in domestic wastewater but has low efficiency regarding the removal of pharmaceutical compounds. Biofilms were shown to interact with pharmaceuticals and were reported to play a role in their capture from water. The antibiotics were reported to display a high risk for aquatic organisms.
Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Brazil , Environmental Monitoring , Humans , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis , WetlandsABSTRACT
Brazil is one of the largest consumers of pesticides in the world. The high rainfall rate and inadequate soil use and management promote the transfer of these compounds to the aquatic system. The aim of this study was to identify and quantify pesticides present in epilithic biofilms in order to evaluate the effectiveness of this matrix as a bioindicator able to discriminate areas and periods with different inputs of pesticides. Among the 25 pesticides analyzed in the biofilms, 20 compounds were detected. The epilithic biofilms picked up pesticides independent of their polarities, even in the period of lower use. The frequency and median concentration of five herbicides (2,4-D, atrazine, desethyl-atrazine, simazine, nicosulfuron), three fungicides (carbendazim, epoxiconazole, tebuconazole), and one insecticide (imidacloprid) were highest in biofilms sampled in summer crops during the growing period. Biofilms collected in the upper region of the catchment, where genetically modified soybean and corn cultivated in a no-tillage system prevail, the highest frequency and median concentration of three herbicides (2,4-D, thifensulfuron, isoproturon), four fungicides (carbendazim, epoxiconazole, tebuconazole, metconazole), and one insecticide (imidacloprid) were observed. Despite the excessive amounts of pesticides used in the catchment, the median values of all pesticides in the epilithic biofilm were considered low. The lower diversity and concentration of pesticides observed in the autumn/winter season is representative of lower use of pesticides, barriers to pesticide transfer from soil to water, and the biofilm's resilience capacity to decompose pesticides.
Subject(s)
Agriculture , Biofilms , Pesticides , Bioaccumulation , Biomarkers , Brazil , Environmental Monitoring , Pesticides/pharmacokinetics , Water MovementsABSTRACT
The total cultivated area in Brazil reached to 62 million ha in 2018, with the predominance of genetically modified soybean and corn (36 and 17 million ha, respectively) in no-tillage systems. In 2018, 5.3 × 105 Mg of active ingredient of pesticides was applied in cropfields, representing about 7.3 L of commercial product by habitant. However, the monitoring of water courses contamination by pesticides remains scarce and is based on traditional grab sampling systems. In this study, we used the grab (water) and passive sampling (Polar Organic Chemical Integrative Sampler-POCIS) to monitor pesticide contamination in the river network of a representative agricultural catchment of southern Brazil. We selected 18 sampling sites located in tributaries and in the main course of the Guaporé River, in Rio Grande do Sul State, with different land use predominance including forest, urban, and agricultural areas. Altogether, 79 and 23 pesticides were, respectively, analyzed in water and POCIS samples. The water of Guaporé River and its tributaries were highly contaminated by many pesticides, especially by four herbicides (2,4-D, atrazine, deethyl-atrazine, and simazine), three fungicides (carbendazim, tebuconazole, and epoxiconazole), and one insecticide (imidacloprid). The amount, type, and concentration of pesticides detected were completely different depending on the sampling technic used. POCIS was effective to discriminate the contamination according to the main land use of each sampling site. The monitored areas with the predominance of soybean cultivation under no-tillage tended to have higher concentrations of fungicide, while in the more diversified region, the herbicides showed higher values. The presence of five herbicides used in corn and grassland forage production was correlated with areas of integrated crop-livestock systems, in contrast to higher contamination by 2,4-D in areas of intensive production of soybean and winter cereals.
Subject(s)
Pesticides/analysis , Water Pollutants, Chemical/analysis , Agriculture , Brazil , Environmental MonitoringABSTRACT
Epilithic biofilms are communities of microorganisms composed mainly of microbial cells, extracellular polymeric substances from the metabolism of microorganisms, and inorganic materials. Biofilms are a useful tool to assess the impact of anthropic action on aquatic environments including the presence of pesticide residues such as glyphosate. The present work seeks to monitor the occurrence of glyphosate and AMPA residues in epilithic biofilms occurring in a watershed. For this, epilithic biofilm samples were collected in the Guaporé River watershed in the fall and spring seasons of 2016 at eight points. Physicochemical properties of the water and biofilms were determined. The determination of glyphosate and AMPA was performed using an ultra-high performance liquid chromatograph coupled to a tandem mass spectrometer. The concentrations of glyphosate and AMPA detected in epilithic biofilms vary with the season (from 90 to 305⯵gâ¯kg-1 for glyphosate and from 50 to 240⯵gâ¯kg-1 for AMPA, in fall and spring, respectively) and are strongly influenced by the amount of herbicide applications. Protected locations and those with poor access not demonstrate the presence of these contaminants. In the other seven points of the Guaporé River watershed, glyphosate was detected in concentrations ranging from 10 to 305⯵gâ¯kg-1, and concentrations of AMPA ranged from 50 to 670⯵gâ¯kg-1. An overview of the contamination in the Guaporé watershed shows that the most affected areas are located in the Marau sub-watershed, which are strongly influenced by the presence of the city of Marau. This confirms the indiscriminate use of glyphosate in the urban area (weed control, domestic gardens and horticulture) and constitutes a problem for human and animal health. The results showed that biofilms can accumulate glyphosate resulting from the contamination of water courses and are sensitive to the sources of pollution and pesticides present in rivers.
Subject(s)
Bacteria/metabolism , Biofilms/drug effects , Glycine/analogs & derivatives , Isoxazoles/metabolism , Rivers/microbiology , Tetrazoles/metabolism , Water Pollutants, Chemical/metabolism , Brazil , Environmental Monitoring , Glycine/metabolism , Herbicides/metabolism , Rivers/chemistry , GlyphosateABSTRACT
Results of detailed modeling of in situ redistribution of heavy metals in pedological horizons of low and moderately metal contaminated soils, considering distinctly different long-term land use, are scarcely reported in literature. We used Hydrus-2D software parameterized with abundant available local soil data to simulate future Zn and Pb movements in soils contaminated by metallurgical fallout in the 20th century. In recent work on comparing different modeling hypotheses, we validated a two-site reactive model set with adjusted chemical kinetic constant values by fitting the 2005 Zn and Pb concentration profiles in soils, with estimated 1901-1963 airborne Zn and Pb loads (Mallmann et al., 2012a). In the present work, we used the same approach to simulate 2005-2055 changes in Zn and Pb depth-distribution and soil-solution concentrations, comparing two hypotheses of chemical equilibrium: i) the validated two-site model (one site at equilibrium and the other involved in kinetic reactions with pore water) set with adjusted kinetic EDTA extraction constants, and ii) a non-linear one-surface site adsorption equilibrium model. Simulated transfers were found generally lower and more realistic when using the two-site model. Simulations showed that consistent Zn redistribution and loss occurred in the moderately contaminated soil until 2055, i.e., more than one century after the main metal deposition, but negligible in low contaminated soils. Transfer of Pb was small in the three soils and under both hypotheses. In 2055, simulated Zn outflow concentrations remained under threshold values for drinking water.
Subject(s)
Lead/analysis , Models, Theoretical , Soil Pollutants/analysis , Zinc/analysis , Agriculture , Computer Simulation , Edetic Acid/chemistry , Groundwater , Metallurgy , Water Pollution, ChemicalABSTRACT
Predicting the transfer of contaminants in soils is often hampered by lacking validation of mathematical models. Here, we applied Hydrus-2D software to three agricultural soils for simulating the 1900-2005 changes of zinc and lead concentration profiles derived from industrial atmospheric deposition, to validate the tested models with plausible assumptions on past metal inputs to reach the 2005 situation. The models were set with data from previous studies on the geochemical background, estimated temporal metal deposition, and the 2005 metal distributions. Different hypotheses of chemical reactions of metals with the soil solution were examined: 100% equilibrium or partial equilibrium, parameterized following kinetic chemical extractions. Finally, a two-site model with kinetic constant values adjusted at 1% of EDTA extraction parameters satisfactory predicted changes in metal concentration profiles for two arable soils. For a grassland soil however, this model showed limited applicability by ignoring the role of earthworm activity in metal incorporation.