Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
EMBO J ; 43(6): 993-1014, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38378890

ABSTRACT

Entry into mitosis has been classically attributed to the activation of a cyclin B/Cdk1 amplification loop via a partial pool of this kinase becoming active at the end of G2 phase. However, how this initial pool is activated is still unknown. Here we discovered a new role of the recently identified PP2A-B55 inhibitor FAM122A in triggering mitotic entry. Accordingly, depletion of the orthologue of FAM122A in C. elegans prevents entry into mitosis in germline stem cells. Moreover, data from Xenopus egg extracts strongly suggest that FAM122A-dependent inhibition of PP2A-B55 could be the initial event promoting mitotic entry. Inhibition of this phosphatase allows subsequent phosphorylation of early mitotic substrates by cyclin A/Cdk, resulting in full cyclin B/Cdk1 and Greatwall (Gwl) kinase activation. Subsequent to Greatwall activation, Arpp19/ENSA become phosphorylated and now compete with FAM122A, promoting its dissociation from PP2A-B55 and taking over its phosphatase inhibition role until the end of mitosis.


Subject(s)
Caenorhabditis elegans , Protein Serine-Threonine Kinases , Animals , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Mitosis , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cyclin B/metabolism
2.
Protein Sci ; 32(8): e4703, 2023 08.
Article in English | MEDLINE | ID: mdl-37338125

ABSTRACT

Inosine 5'-monophosphate (IMP) dehydrogenase (IMPDH) is an ubiquitous enzyme that catalyzes the NAD+ -dependent oxidation of inosine 5'-monophosphate into xanthosine 5'-monophosphate. This enzyme is formed of two distinct domains, a core domain where the catalytic reaction occurs, and a less-conserved Bateman domain. Our previous studies gave rise to the classification of bacterial IMPDHs into two classes, according to their oligomeric and kinetic properties. MgATP is a common effector but cause to different effects when it binds within the Bateman domain: it is either an allosteric activator for Class I IMPDHs or a modulator of the oligomeric state for Class II IMPDHs. To get insight into the role of the Bateman domain in the dissimilar properties of the two classes, deleted variants of the Bateman domain and chimeras issued from the interchange of the Bateman domain between the three selected IMPDHs have been generated and characterized using an integrative structural biology approach. Biochemical, biophysical, structural, and physiological studies of these variants unveil the Bateman domain as being the carrier of the molecular behaviors of both classes.


Subject(s)
Adenosine Triphosphate , IMP Dehydrogenase , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Bacteria/metabolism , Inosine
3.
Eur J Med Chem ; 246: 114941, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36455355

ABSTRACT

Nicotinamide adenine dinucleotide kinases (NAD kinases) are essential and ubiquitous enzymes involved in the production of NADP(H) which is an essential cofactor in many metabolic pathways. Targeting NAD kinase (NADK), a rate limiting enzyme of NADP biosynthesis pathway, represents a new promising approach to treat bacterial infections. Previously, we have produced the first NADK inhibitor active against staphylococcal infection. From this linear di-adenosine derivative, namely NKI1, we designed macrocyclic analogues. Here, we describe the synthesis and evaluation of an original series of cyclic diadenosine derivatives as NADK inhibitors of two pathogenic bacteria, Listeria monocytogenes and Staphylococcus aureus. The nature and length of the link between the two adenosine units were examined leading to sub-micromolar inhibitors of NADK1 from L. monocytogenes, including its most potent in vitro inhibitor reported so far (with a 300-fold improvement compared to NKI1).


Subject(s)
Adenosine , Phosphotransferases (Alcohol Group Acceptor) , NADP/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Adenosine/pharmacology , Structure-Activity Relationship , Bacteria/metabolism
4.
FEBS J ; 290(2): 482-501, 2023 01.
Article in English | MEDLINE | ID: mdl-36036789

ABSTRACT

Multidrug resistance is a major public health problem that requires the urgent development of new antibiotics and therefore the identification of novel bacterial targets. The activity of nicotinamide adenine dinucleotide kinase, NADK, is essential in all bacteria tested so far, including many human pathogens that display antibiotic resistance leading to the failure of current treatments. Inhibiting NADK is therefore a promising and innovative antibacterial strategy since there is currently no drug on the market targeting this enzyme. Through a fragment-based drug design approach, we have recently developed a NAD+ -competitive inhibitor of NADKs, which displayed in vivo activity against Staphylococcus aureus. Here, we show that this compound, a di-adenosine derivative, is inactive against the NADK enzyme from the Gram-negative bacteria Pseudomonas aeruginosa (PaNADK). This lack of activity can be explained by the crystal structure of PaNADK, which was determined in complex with NADP+ in this study. Structural analysis led us to design and synthesize a benzamide adenine dinucleoside analogue, active against PaNADK. This novel compound efficiently inhibited PaNADK enzymatic activity in vitro with a Ki of 4.6 µm. Moreover, this compound reduced P. aeruginosa infection in vivo in a zebrafish model.


Subject(s)
Anti-Bacterial Agents , NAD , Pseudomonas aeruginosa , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , NAD/analogs & derivatives , Phosphotransferases (Alcohol Group Acceptor) , Pseudomonas aeruginosa/drug effects , Zebrafish , Drug Design
5.
Mol Cell ; 82(17): 3299-3311.e8, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35868311

ABSTRACT

NAD+ kinases (NADKs) are metabolite kinases that phosphorylate NAD+ molecules to make NADP+, a limiting substrate for the generation of reducing power NADPH. NADK2 sustains mitochondrial NADPH production that enables proline biosynthesis and antioxidant defense. However, its molecular architecture and mechanistic regulation remain undescribed. Here, we report the crystal structure of human NADK2, revealing a substrate-driven mode of activation. We find that NADK2 presents an unexpected dimeric organization instead of the typical tetrameric assemblage observed for other NADKs. A specific extended segment (aa 325-365) is crucial for NADK2 dimerization and activity. Moreover, we characterize numerous acetylation events, including those on Lys76 and Lys304, which reside near the active site and inhibit NADK2 activity without disrupting dimerization, thereby reducing mitochondrial NADP(H) production, proline synthesis, and cell growth. These findings reveal important molecular insight into the structure and regulation of a vital enzyme in mitochondrial NADPH and proline metabolism.


Subject(s)
Lysine , NAD , Acetylation , Catalytic Domain , Humans , Lysine/metabolism , Mitochondrial Proteins/metabolism , NAD/metabolism , NADP/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proline/metabolism
6.
J Proteome Res ; 21(7): 1654-1663, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35642445

ABSTRACT

Cells express thousands of macromolecules, and their functioning relies on multiple networks of intermolecular interactions. These interactions can be experimentally determined at different spatial and temporal resolutions. But, physical interfaces are not often delineated directly, especially in high-throughput experiments. A large fraction of protein-protein interactions involves domain and so-called SLiMs (for Short Linear Motifs). Often, SLiMs lie in disordered regions or loops. Their small size, limited sequence conservation, and loosely folded nature prevent straightforward detection. SLiMAn (Short Linear Motif Analysis), a new web server, is provided to help thorough analysis of interactomics data. From a list of putative interactants (e.g., output from an interactomics study), SLiMs (from ELM) and SLiM-recognition domains (from Pfam) are extracted, and putative pairings are displayed. Predicted results can be filtered using motif E-values, IUPred2 scores, or BioGRID interaction matches. When structural templates are available, a given SLiM and its recognition domain can be modeled using SCWRL. We illustrate here the use of SLiMAn on distinct examples, including one real-case study. We oversee wide-range applications for SLiMAn in the context of the massive analysis of protein-protein interactions. This new web server is made freely available at https://sliman.cbs.cnrs.fr.


Subject(s)
Protein Interaction Domains and Motifs , Amino Acid Motifs
7.
Int J Mol Sci ; 23(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35328672

ABSTRACT

Toxoplasmosis is a highly prevalent human disease, and virulent strains of this parasite emerge from wild biotopes. Here, we report on the potential of a histone deacetylase (HDAC) inhibitor we previously synthesized, named JF363, to act in vitro against a large panel of Toxoplasma strains, as well as against the liver and blood stages of Plasmodium parasites, the causative agents of malaria. In vivo administration of the drug significantly increases the survival of mice during the acute phase of infection by T. gondii, thus delaying its spreading. We further provide evidence of the compound's efficiency in controlling the formation of cysts in the brain of T. gondii-infected mice. A convincing docking of the JF363 compound in the active site of the five annotated ME49 T. gondii HDACs was performed by extensive sequence-structure comparison modeling. The resulting complexes show a similar mode of binding in the five paralogous structures and a quite similar prediction of affinities in the micromolar range. Altogether, these results pave the way for further development of this compound to treat acute and chronic toxoplasmosis. It also shows promise for the future development of anti-Plasmodium therapeutic interventions.


Subject(s)
Parasites , Plasmodium , Toxoplasma , Toxoplasmosis , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases , Mice , Toxoplasmosis/drug therapy
8.
FEBS J ; 289(16): 4869-4887, 2022 08.
Article in English | MEDLINE | ID: mdl-35152545

ABSTRACT

Tuberculosis claims significantly more than one million lives each year. A feasible way to face the issue of drug resistance is the development of new antibiotics. Bacterial uridine 5'-monophosphate (UMP) kinase is a promising target for novel antibiotic discovery as it is essential for bacterial survival and has no counterpart in human cells. The UMP kinase from M. tuberculosis is also a model of particular interest for allosteric regulation with two effectors, GTP (positive) and UTP (negative). In this study, using X-ray crystallography and cryo-electron microscopy, we report for the first time a detailed description of the negative effector UTP-binding site of a typical Gram-positive behaving UMP kinase. Comparison between this snapshot of low affinity for Mg-ATP with our previous 3D-structure of the GTP-bound complex of high affinity for Mg-ATP led to a better understanding of the cooperative mechanism and the allosteric regulation of UMP kinase. Thermal shift assay and circular dichroism experiments corroborate our model of an inhibition by UTP linked to higher flexibility of the Mg-ATP-binding domain. These new structural insights provide valuable knowledge for future drug discovery strategies targeting bacterial UMP kinases.


Subject(s)
Anti-Bacterial Agents , Gram-Positive Bacteria , Adenosine Triphosphate , Allosteric Regulation , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Cryoelectron Microscopy , Guanosine Triphosphate/pharmacology , Humans , Nucleoside-Phosphate Kinase , Uridine Monophosphate/pharmacology , Uridine Triphosphate/pharmacology
9.
Proteins ; 90(6): 1331-1345, 2022 06.
Article in English | MEDLINE | ID: mdl-35122336

ABSTRACT

Dissimilatory sulfite reductase is an ancient enzyme that has linked the global sulfur and carbon biogeochemical cycles since at least 3.47 Gya. While much has been learned about the phylogenetic distribution and diversity of DsrAB across environmental gradients, far less is known about the structural changes that occurred to maintain DsrAB function as the enzyme accompanied diversification of sulfate/sulfite reducing organisms (SRO) into new environments. Analyses of available crystal structures of DsrAB from Archaeoglobus fulgidus and Desulfovibrio vulgaris, representing early and late evolving lineages, respectively, show that certain features of DsrAB are structurally conserved, including active siro-heme binding motifs. Whether such structural features are conserved among DsrAB recovered from varied environments, including hot spring environments that host representatives of the earliest evolving SRO lineage (e.g., MV2-Eury), is not known. To begin to overcome these gaps in our understanding of the evolution of DsrAB, structural models from MV2.Eury were generated and evolutionary sequence co-variance analyses were conducted on a curated DsrAB database. Phylogenetically diverse DsrAB harbor many conserved functional residues including those that ligate active siro-heme(s). However, evolutionary co-variance analysis of monomeric DsrAB subunits revealed several False Positive Evolutionary Couplings (FPEC) that correspond to residues that have co-evolved despite being too spatially distant in the monomeric structure to allow for direct contact. One set of FPECs corresponds to residues that form a structural path between the two active siro-heme moieties across the interface between heterodimers, suggesting the potential for allostery or electron transfer within the enzyme complex. Other FPECs correspond to structural loops and gaps that may have been selected to stabilize enzyme function in different environments. These structural bioinformatics results suggest that DsrAB has maintained allosteric communication pathways between subunits as SRO diversified into new environments. The observations outlined here provide a framework for future biochemical and structural analyses of DsrAB to examine potential allosteric control of this enzyme.


Subject(s)
Hydrogensulfite Reductase , Oxidoreductases Acting on Sulfur Group Donors , Heme/chemistry , Hydrogensulfite Reductase/genetics , Hydrogensulfite Reductase/metabolism , Oxidoreductases Acting on Sulfur Group Donors/genetics , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Phylogeny , Sulfates/chemistry , Sulfates/metabolism
10.
J Med Chem ; 65(2): 1552-1566, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34958586

ABSTRACT

Dabrafenib is an anticancer drug currently used in the clinics, alone or in combination. However, dabrafenib was recently shown to potently activate the human nuclear receptor pregnane X receptor (PXR). PXR activation increases the clearance of various chemicals and drugs, including dabrafenib itself. It may also enhance cell proliferation and tumor aggressiveness. Therefore, there is a need for rational design of a potent protein kinase B-Raf inhibitor devoid of binding to the secondary target PXR and resisting rapid metabolism. By determining the crystal structure of dabrafenib bound to PXR and analyzing its mode of binding to both PXR and its primary target, B-Raf-V600E, we were able to derive new compounds with nanomolar activity against B-Raf and no detectable affinity for PXR. The crystal structure of B-Raf in complex with our lead compound revealed a subdomain swapping of the activation loop with potentially important functional implications for a prolonged inhibition of B-Raf-V600E.


Subject(s)
Cell Proliferation , Drug Design , Imidazoles/pharmacology , Melanoma/drug therapy , Oximes/pharmacology , Pregnane X Receptor/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Crystallography, X-Ray , Humans , Imidazoles/chemistry , Melanoma/pathology , Molecular Docking Simulation , Oximes/chemistry , Protein Binding , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
11.
Int J Mol Sci ; 22(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34884448

ABSTRACT

Pathogenic variants in CRB1 lead to diverse recessive retinal disorders from severe Leber congenital amaurosis to isolated macular dystrophy. Until recently, no clear phenotype-genotype correlation and no appropriate mouse models existed. Herein, we reappraise the phenotype-genotype correlation of 50 patients with regards to the recently identified CRB1 isoforms: a canonical long isoform A localized in Müller cells (12 exons) and a short isoform B predominant in photoreceptors (7 exons). Twenty-eight patients with early onset retinal dystrophy (EORD) consistently had a severe Müller impairment, with variable impact on the photoreceptors, regardless of isoform B expression. Among them, two patients expressing wild type isoform B carried one variant in exon 12, which specifically damaged intracellular protein interactions in Müller cells. Thirteen retinitis pigmentosa patients had mainly missense variants in laminin G-like domains and expressed at least 50% of isoform A. Eight patients with the c.498_506del variant had macular dystrophy. In one family homozygous for the c.1562C>T variant, the brother had EORD and the sister macular dystrophy. In contrast with the mouse model, these data highlight the key role of Müller cells in the severity of CRB1-related dystrophies in humans, which should be taken into consideration for future clinical trials.


Subject(s)
Ependymoglial Cells/pathology , Eye Proteins/genetics , Eye Proteins/metabolism , Macular Degeneration/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Retinal Dystrophies/pathology , Retinitis Pigmentosa/pathology , Adolescent , Age of Onset , Alternative Splicing , Child , Child, Preschool , Ependymoglial Cells/metabolism , Eye Proteins/chemistry , Female , Genetic Association Studies , Humans , Infant , Macular Degeneration/genetics , Macular Degeneration/metabolism , Male , Membrane Proteins/chemistry , Models, Molecular , Mutation, Missense , Nerve Tissue Proteins/chemistry , Point Mutation , Retinal Dystrophies/genetics , Retinal Dystrophies/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retrospective Studies , Sequence Deletion , Young Adult
12.
J Mol Graph Model ; 108: 107974, 2021 11.
Article in English | MEDLINE | ID: mdl-34274728

ABSTRACT

Protein flexibility is challenging for both experimentalists and modellers, especially in the field of drug design. Estrogen Receptor alpha (ERα) is an extensively studied Nuclear Receptor (NR) and a well-known therapeutic target with an important role in development and physiology. It is also a frequent off-target in standard toxicity tests for endocrine disruption. Here, we aim to evaluate the degree to which the conformational space and macromolecular flexibility of this well-characterized drug target can be described. Our approach exploits hundreds of crystallographic structures by means of molecular dynamics simulations and of virtual screening. The analysis of hundreds of crystal structures confirms the presence of two main conformational states, known as 'agonist' and 'antagonist', that mainly differ by the orientation of the C-terminal helix H12 which serves to close the binding pocket. ERα also shows some loop flexibility, as well as variable side-chain orientations in its active site. We scrutinized the extent to which standard molecular dynamics simulations or crystallographic refinement as ensemble recapitulate most of the variability features seen by the array of available crystal structures. In parallel, we investigated on the kind and extent of flexibility that are required to achieve convincing docking for all high-affinity ERα ligands present in BindingDB. Using either only one conformation with a few side-chains set flexible, or static structure ensembles in parallel during docking led to good quality and similar pose predictions. These results suggest that the several hundreds of crystal structures already known can properly describe the whole conformational universe of ERα's ligand binding domain. This opens the road for better drug design and affinity computation.


Subject(s)
Estrogen Receptor alpha , Pharmaceutical Preparations , Binding Sites , Drug Design , Estrogen Receptor alpha/metabolism , Ligands , Molecular Conformation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
13.
Nat Commun ; 12(1): 3565, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34117214

ABSTRACT

Arpp19 is a potent PP2A-B55 inhibitor that regulates this phosphatase to ensure the stable phosphorylation of mitotic/meiotic substrates. At G2-M, Arpp19 is phosphorylated by the Greatwall kinase on S67. This phosphorylated Arpp19 form displays a high affinity to PP2A-B55 and a slow dephosphorylation rate, acting as a competitor of PP2A-B55 substrates. The molecular determinants conferring slow dephosphorylation kinetics to S67 are unknown. PKA also phosphorylates Arpp19. This phosphorylation performed on S109 is essential to maintain prophase I-arrest in Xenopus oocytes although the underlying signalling mechanism is elusive. Here, we characterize the molecular determinants conferring high affinity and slow dephosphorylation to S67 and controlling PP2A-B55 inhibitory activity of Arpp19. Moreover, we show that phospho-S109 restricts S67 phosphorylation by increasing its catalysis by PP2A-B55. Finally, we discover a double feed-back loop between these two phospho-sites essential to coordinate the temporal pattern of Arpp19-dependent PP2A-B55 inhibition and Cyclin B/Cdk1 activation during cell division.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphoproteins/metabolism , Protein Phosphatase 2/metabolism , Animals , CDC2 Protein Kinase/metabolism , Carboxylic Ester Hydrolases/genetics , Cell Division/physiology , Cyclin B/metabolism , Feedback , Female , Meiosis , Mitosis , Phosphoprotein Phosphatases/genetics , Phosphoproteins/genetics , Phosphorylation , Protein Phosphatase 2/genetics , Xenopus , Xenopus Proteins , Xenopus laevis/metabolism
14.
Nucleic Acids Res ; 49(W1): W567-W572, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33963857

ABSTRACT

Proteo3Dnet is a web server dedicated to the analysis of mass spectrometry interactomics experiments. Given a flat list of proteins, its aim is to organize it in terms of structural interactions to provide a clearer overview of the data. This is achieved using three means: (i) the search for interologs with resolved structure available in the protein data bank, including cross-species remote homology search, (ii) the search for possibly weaker interactions mediated through Short Linear Motifs as predicted by ELM-a unique feature of Proteo3Dnet, (iii) the search for protein-protein interactions physically validated in the BioGRID database. The server then compiles this information and returns a graph of the identified interactions and details about the different searches. The graph can be interactively explored to understand the way the core complexes identified could interact. It can also suggest undetected partners to the experimentalists, or specific cases of conditionally exclusive binding. The interest of Proteo3Dnet, previously demonstrated for the difficult cases of the proteasome and pragmin complexes data is, here, illustrated in the context of yeast precursors to the small ribosomal subunits and the smaller interactome of 14-3-3zeta frequent interactors. The Proteo3Dnet web server is accessible at http://bioserv.rpbs.univ-paris-diderot.fr/services/Proteo3Dnet/.


Subject(s)
Protein Conformation , Protein Interaction Mapping/methods , Software , 14-3-3 Proteins/metabolism , Internet , Mass Spectrometry , Protein Interaction Domains and Motifs , Protein Interaction Maps , Proteomics , Ribosome Subunits, Small, Eukaryotic/metabolism
15.
Front Microbiol ; 12: 659464, 2021.
Article in English | MEDLINE | ID: mdl-33927708

ABSTRACT

The bacterial flagellar motor (BFM) is a rotary molecular motor embedded in the cell membrane of numerous bacteria. It turns a flagellum which acts as a propeller, enabling bacterial motility and chemotaxis. The BFM is rotated by stator units, inner membrane protein complexes that stochastically associate to and dissociate from individual motors at a rate which depends on the mechanical and electrochemical environment. Stator units consume the ion motive force (IMF), the electrochemical gradient across the inner membrane that results from cellular respiration, converting the electrochemical energy of translocated ions into mechanical energy, imparted to the rotor. Here, we review some of the main results that form the base of our current understanding of the relationship between the IMF and the functioning of the flagellar motor. We examine a series of studies that establish a linear proportionality between IMF and motor speed, and we discuss more recent evidence that the stator units sense the IMF, altering their rates of dynamic assembly. This, in turn, raises the question of to what degree the classical dependence of motor speed on IMF is due to stator dynamics vs. the rate of ion flow through the stators. Finally, while long assumed to be static and homogeneous, there is mounting evidence that the IMF is dynamic, and that its fluctuations control important phenomena such as cell-to-cell signaling and mechanotransduction. Within the growing toolbox of single cell bacterial electrophysiology, one of the best tools to probe IMF fluctuations may, ironically, be the motor that consumes it. Perfecting our incomplete understanding of how the BFM employs the energy of ion flow will help decipher the dynamical behavior of the bacterial IMF.

16.
Ophthalmol Sci ; 1(3): 100052, 2021 Sep.
Article in English | MEDLINE | ID: mdl-36247817

ABSTRACT

Purpose: To identify relevant criteria for gene therapy based on clinical and genetic characteristics of rod-cone dystrophy associated with RLBP1 pathogenic variants in a large cohort comprising children and adults. Design: Retrospective cohort study. Participants: Patients with pathogenic variants in RLBP1 registered in a single French reference center specialized in inherited retinal dystrophies. Methods: Clinical, multimodal imaging, and genetic findings were reviewed. Main Outcome Measures: Age of onset; visual acuity; ellipsoid line length; nasal, temporal, and foveal retinal thickness; and pathogenic variants and related phenotypes, including Newfoundland rod-cone and Bothnia dystrophies (NFRCDs), were reappraised. Results: Twenty-one patients (15 families) were included. The most frequent form was NFRCD with 12 patients (8 families) homozygous for the recurrent deletion of exons 7 through 9 in RLBP1 and 5 patients (4 families) with biallelic protein-truncating variants (2 novel: p.Gln16∗ and p.Tyr251∗). A novel combination of the p.Arg234Trp Bothnia variant with a nonsense variant in trans led to Bothnia dystrophy in 2 sisters. One proband carrying the p.Met266Lys Bothnia variant and in trans p.Arg121Trp and a second, with the p.Arg9Cys and p.Tyr111∗ combination, both demonstrated mild retinitis punctata albescens. Independently of genotype, all patients showed a visual acuity of worse than 20/200, an ellipsoid line width of less than 1000 µm, and a mean foveal thickness of less than 130 to 150 µm, with loss of both the interdigitation and ellipsoid lines. Conclusions: The eligibility for RLBP1 gene therapy first should be determined according to the biallelic variant combination using a robust classification as proposed herein. An ellipsoid line width of more than 1200 µm and a central thickness of more than 130 to 150 µm with detectable ellipsoid and interdigitation lines should be 2 prerequisite imaging indicators for gene therapy.

17.
DNA Repair (Amst) ; 97: 103009, 2021 01.
Article in English | MEDLINE | ID: mdl-33220536

ABSTRACT

Mrr from Escherichia coli K12 is a type IV restriction endonuclease whose role is to recognize and cleave foreign methylated DNA. Beyond this protective role, Mrr can inflict chromosomal DNA damage that elicits the SOS response in the host cell upon heterologous expression of specific methyltransferases such as M.HhaII, or after exposure to high pressure (HP). Activation of Mrr in response to these perturbations involves an oligomeric switch that dissociates inactive homo-tetramers into active dimers. Here we used scanning number and brightness (sN&B) analysis to determine in vivo the stoichiometry of a constitutively active Mrr mutant predicted to be dimeric and examine other GFP-Mrr mutants compromised in their response to either M.HhaII activity or HP shock. We also observed in vitro the direct pressure-induced tetramer dissociation by HP fluorescence correlation spectroscopy of purified GFP-Mrr. To shed light on the linkages between subunit interactions and activity of Mrr and its variants, we built a structural model of the full-length tetramer bound to DNA. Similar to functionally related endonucleases, the conserved DNA cleavage domain would be sequestered by the DNA recognition domain in the Mrr inactive tetramer, dissociating into an enzymatically active dimer upon interaction with multiple DNA sites.


Subject(s)
DNA Restriction Enzymes/genetics , Escherichia coli K12/enzymology , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , SOS Response, Genetics , DNA Damage , DNA Restriction Enzymes/metabolism , Escherichia coli K12/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Pressure , Protein Conformation
18.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105870

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) kinases are essential and ubiquitous enzymes involved in the tight regulation of NAD/nicotinamide adenine dinucleotide phosphate (NADP) levels in many metabolic pathways. Consequently, they represent promising therapeutic targets in cancer and antibacterial treatments. We previously reported diadenosine derivatives as NAD kinase inhibitors with bactericidal activities on Staphylococcus aureus. Among them, one compound (namely NKI1) was found effective in vivo in a mouse infection model. With the aim to gain detailed knowledge about the selectivity and mechanism of action of this lead compound, we planned to develop a chemical probe that could be used in affinity-based chemoproteomic approaches. Here, we describe the first functionalized chemical probe targeting a bacterial NAD kinase. Aminoalkyl functional groups were introduced on NKI1 for further covalent coupling to an activated SepharoseTM matrix. Inhibitory properties of functionalized NKI1 derivatives together with X-ray characterization of their complexes with the NAD kinase led to identify candidate compounds that are amenable to covalent coupling to a matrix.


Subject(s)
Adenine/analogs & derivatives , Adenosine/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Adenine/chemical synthesis , Adenine/pharmacology , Adenosine/pharmacology , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Mice , Models, Molecular , NADP/chemistry , Protein Conformation , Sepharose/chemistry , Staphylococcus aureus
19.
Med Sci (Paris) ; 36 Hors série n° 1: 38-41, 2020 Oct.
Article in French | MEDLINE | ID: mdl-33052092

ABSTRACT

TITLE: Profilage in silico des inhibiteurs de protéine kinases. ABSTRACT: Les protéine kinases ont été rapidement identifiées comme favorisant l'apparition de cancers, à travers leur implication dans la régulation du développement et du cycle cellulaire. Il y a une vingtaine d'années, la mise sur le marché des premiers traitements par inhibiteur de protéine kinase, ouvrait la voie vers de nouvelles solutions médicamenteuses plus ciblées contre le cancer. Depuis, nombreuses sont les données structurales et fonctionnelles acquises sur ces cibles thérapeutiques. Les techniques informatiques ont elles aussi évolué, notamment les méthodes d'apprentissage automatique. En tirant parti de la grande quantité d'informations disponibles aujourd'hui, ces méthodes devraient permettre prochainement la prédiction fine de l'interaction d'un inhibiteur donné avec chaque protéine kinase humaine et donc, à terme, la construction d'outils de profilage de leurs inhibiteurs spécifiques. Cette approche intégrative devrait aider la découverte de solutions thérapeutiques anti-cancéreuses plus efficaces et plus sûres.


Subject(s)
Computational Biology/methods , Drug Evaluation, Preclinical/methods , Protein Kinase Inhibitors/isolation & purification , Protein Kinase Inhibitors/pharmacology , Computer Simulation , High-Throughput Screening Assays/methods , Humans , Protein Kinases/isolation & purification , Protein Kinases/metabolism , Protein Processing, Post-Translational/drug effects , Proteome/analysis , Proteome/drug effects , Proteome/metabolism
20.
J Proteome Res ; 19(7): 2807-2820, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32338910

ABSTRACT

Protein-protein interactions play a major role in the molecular machinery of life, and various techniques such as AP-MS are dedicated to their identification. However, those techniques return lists of proteins devoid of organizational structure, not detailing which proteins interact with which others. Proposing a hierarchical view of the interactions between the members of the flat list becomes highly tedious for large data sets when done by hand. To help hierarchize this data, we introduce a new bioinformatics protocol that integrates information of the multimeric protein 3D structures available in the Protein Data Bank using remote homology detection, as well as information related to Short Linear Motifs and interaction data from the BioGRID. We illustrate on two unrelated use-cases of different complexity how our approach can be useful to decipher the network of interactions hidden in the list of input proteins, and how it provides added value compared to state-of-the-art resources such as Interactome3D or STRING. Particularly, we show the added value of using homology detection to distinguish between orthologs and paralogs, and to distinguish between core obligate and more facultative interactions. We also demonstrate the potential of considering interactions occurring through Short Linear Motifs.


Subject(s)
Protein Interaction Maps , Proteomics , Computational Biology , Databases, Protein , Protein Interaction Mapping , Proteins/genetics , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...