Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; : 136244, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368578

ABSTRACT

Sticholysin II (StII), a pore-forming toxin from the marine anemone Stichodactyla helianthus, enhances an antigen-specific cytotoxic T lymphocyte (CTL) response when co-encapsulated in liposomes with a model antigen. This capacity does not depend exclusively on its pore-forming activity and is partially supported by its ability to activate Toll-like receptor 4 (TLR4) in dendritic cells, presumably by interacting with this receptor or by triggering signaling cascades upon binding to lipid membrane. In order to investigate whether the lipid binding capacity of StII is required for immunomodulation, we designed a mutant in which the aromatic amino acids from the interfacial binding site Trp110, Tyr111 and Trp114 were substituted by Ala. In the present work, we demonstrated that StII3A keeps the secondary structure composition and global folding of StII, while it loses its lipid binding and permeabilization abilities. Despite this, StII3A upregulates dendritic cells maturation markers, enhances an antigen-specific effector CD8+ T cells response and confers antitumor protection in a preventive scenario in C57BL/6 mice. Our results indicate that a mechanism independent of its lipid binding ability is involved in the immunomodulatory capacity of StII, pointing to StII3A as a promising candidate to improve the reliability of the Sts-based vaccine platform.

2.
Toxins (Basel) ; 13(8)2021 08 13.
Article in English | MEDLINE | ID: mdl-34437438

ABSTRACT

Actinoporins (APs) are soluble pore-forming proteins secreted by sea anemones that experience conformational changes originating in pores in the membranes that can lead to cell death. The processes involved in the binding and pore-formation of members of this protein family have been deeply examined in recent years; however, the intracellular responses to APs are only beginning to be understood. Unlike pore formers of bacterial origin, whose intracellular impact has been studied in more detail, currently, we only have knowledge of a few poorly integrated elements of the APs' intracellular action. In this review, we present and discuss an updated landscape of the studies aimed at understanding the intracellular pathways triggered in response to APs attack with particular reference to sticholysin II, the most active isoform produced by the Caribbean Sea anemone Stichodactyla helianthus. To achieve this, we first describe the major alterations these cytolysins elicit on simpler cells, such as non-nucleated mammalian erythrocytes, and then onto more complex eukaryotic cells, including tumor cells. This understanding has provided the basis for the development of novel applications of sticholysins such as the construction of immunotoxins directed against undesirable cells, such as tumor cells, and the design of a cancer vaccine platform. These are among the most interesting potential uses for the members of this toxin family that have been carried out in our laboratory.


Subject(s)
Cell Death/drug effects , Cnidarian Venoms/metabolism , Cnidarian Venoms/toxicity , Immunotoxins/chemistry , Immunotoxins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Sea Anemones/chemistry , Animals
3.
Mol Immunol ; 131: 144-154, 2021 03.
Article in English | MEDLINE | ID: mdl-33422341

ABSTRACT

Sticholysins (Sts) I and II (StI and StII) are pore-forming proteins (PFPs), purified from the Caribbean Sea anemone Stichodactyla helianthus. StII encapsulated into liposomes induces a robust antigen-specific cytotoxic CD8+ T lymphocytes (CTL) response and in its free form the maturation of bone marrow-derived dendritic cells (BM-DCs). It is probable that the latter is partially supporting in part the immunomodulatory effect on the CTL response induced by StII-containing liposomes. In the present work, we demonstrate that the StII's ability of inducing maturation of BM-DCs is also shared by StI, an isoform of StII. Using heat-denatured Sts we observed a significant reduction in the up-regulation of maturation markers indicating that both PFP's ability to promote maturation of BM-DCs is dependent on their conformational characteristics. StII-mediated DC maturation was abrogated in BM-DCs from toll-like receptor (TLR) 4 and myeloid differentiation primary response gene 88 (MyD88)-knockout mice but not in cells from TLR2-knockout mice. Furthermore, the antigen-specific CTL response induced by StII-containing liposomes was reduced in TLR4-knockout mice. These results indicate that StII, and probably by extension StI, has the ability to induce maturation of DCs through a TLR4/MyD88-dependent pathway, and that this activation contributes to the CTL response generated by StII-containing liposomes.


Subject(s)
Cnidarian Venoms/metabolism , Dendritic Cells/metabolism , Toll-Like Receptor 4/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/physiology , Cells, Cultured , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Organic Chemicals/metabolism , Signal Transduction/physiology
4.
Front Immunol ; 9: 2473, 2018.
Article in English | MEDLINE | ID: mdl-30455685

ABSTRACT

Cross-presentation is an important mechanism for the differentiation of effector cytotoxic T lymphocytes (CTL) from naïve CD8+ T-cells, a key response for the clearance of intracellular pathogens and tumors. The liposomal co-encapsulation of the pore-forming protein sticholysin II (StII) with ovalbumin (OVA) (Lp/OVA/StII) induces a powerful OVA-specific CTL activation and an anti-tumor response in vivo. However, the pathway through which the StII contained in this preparation is able to induce antigen cross-presentation and the type of professional antigen presenting cells (APCs) involved have not been elucidated. Here, the ability of mouse bone marrow-derived dendritic cells (BM-DCs) and macrophages (BM-MΦs) stimulated with Lp/OVA/StII to activate SIINFEKL-specific B3Z CD8+ T cells was evaluated in the presence of selected inhibitors. BM-MΦs, but not BM-DCs were able to induce SIINFEKL-specific B3Z CD8+ T cell activation upon stimulation with Lp/OVA/StII. The cross-presentation of OVA was markedly decreased by the lysosome protease inhibitors, leupeptin and cathepsin general inhibitor, while it was unaffected by the proteasome inhibitor epoxomicin. This process was also significantly reduced by phagocytosis and Golgi apparatus function inhibitors, cytochalasin D and brefeldin A, respectively. These results are consistent with the concept that BM-MΦs internalize these liposomes through a phagocytic mechanism resulting in the cross-presentation of the encapsulated OVA by the vacuolar pathway. The contribution of macrophages to the CTL response induced by Lp/OVA/StII in vivo was determined by depleting macrophages with clodronate-containing liposomes. CTL induction was almost completely abrogated in mice depleted of macrophages, demonstrating the relevance of these APCs in the antigen cross-presentation induced by this formulation.


Subject(s)
Cnidarian Venoms/metabolism , Dendritic Cells/physiology , Macrophages/physiology , T-Lymphocytes, Cytotoxic/immunology , Vacuoles/metabolism , Animals , Antigens/immunology , CD8 Antigens/metabolism , Cells, Cultured , Cnidarian Venoms/chemistry , Cross-Priming , Female , Leupeptins/pharmacology , Liposomes/chemistry , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Ovalbumin/immunology
5.
J Immunol ; 198(7): 2772-2784, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28258198

ABSTRACT

Vaccine strategies to enhance CD8+ CTL responses remain a current challenge because they should overcome the plasmatic and endosomal membranes for favoring exogenous Ag access to the cytosol of APCs. As a way to avoid this hurdle, sticholysin (St) II, a pore-forming protein from the Caribbean Sea anemone Stichodactyla helianthus, was encapsulated with OVA into liposomes (Lp/OVA/StII) to assess their efficacy to induce a CTL response. OVA-specific CD8+ T cells transferred to mice immunized with Lp/OVA/StII experienced a greater expansion than when the recipients were injected with the vesicles without St, mostly exhibiting a memory phenotype. Consequently, Lp/OVA/StII induced a more potent effector function, as shown by CTLs, in vivo assays. Furthermore, treatment of E.G7-OVA tumor-bearing mice with Lp/OVA/StII significantly reduced tumor growth being more noticeable in the preventive assay. The contribution of CD4+ and CD8+ T cells to CTL and antitumor activity, respectively, was elucidated. Interestingly, the irreversibly inactive variant of the StI mutant StI W111C, encapsulated with OVA into Lp, elicited a similar OVA-specific CTL response to that observed with Lp/OVA/StII or vesicles encapsulating recombinant StI or the reversibly inactive StI W111C dimer. These findings suggest the relative independence between StII pore-forming activity and its immunomodulatory properties. In addition, StII-induced in vitro maturation of dendritic cells might be supporting these properties. These results are the first evidence, to our knowledge, that StII, a pore-forming protein from a marine eukaryotic organism, encapsulated into Lp functions as an adjuvant to induce a robust specific CTL response.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Cancer Vaccines/immunology , Cnidarian Venoms/administration & dosage , Neoplasms, Experimental/pathology , T-Lymphocytes, Cytotoxic/drug effects , Animals , Cnidarian Venoms/immunology , Female , Flow Cytometry , Liposomes/immunology , Mice , Mice, Inbred C57BL , T-Lymphocytes, Cytotoxic/immunology
6.
Int Immunol ; 26(8): 427-37, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24618118

ABSTRACT

B-1 lymphocytes comprise a unique subset of B cells that differ phenotypically, ontogenetically and functionally from conventional B-2 cells. A frequent specificity of the antibody repertoire of peritoneal B-1 cells is phosphatidylcholine. Liposomes containing phosphatidylcholine have been studied as adjuvants and their interaction with dendritic cells and macrophages has been demonstrated. However, the role of B-1 cells in the adjuvanticity of liposomes composed of phosphatidylcholine has not been explored. In the present work, we studied the contribution of B-1 cells to the humoral response against ovalbumin (OVA) encapsulated into dipalmitoylphosphatidylcholine (DPPC) and cholesterol-containing liposomes. BALB/X-linked immunodeficient (xid) mice, which are deficient in B-1 cells, showed quantitative and qualitative differences in the anti-OVA antibody response compared with wild-type animals after immunization with these liposomes. The OVA-specific immune response was significantly increased in the BALB/xid mice when reconstituted with B-1 cells from naive BALB/c mice. Our results indicate the internalization of DPPC-containing liposomes by these cells and their migration from the peritoneal cavity to the spleen. Phosphatidylcholine significantly contributed to the immunogenicity of liposomes, as DPPC-containing liposomes more effectively stimulated the anti-OVA response compared with vesicles composed of dipalmitoylphosphatidylglycerol. In conclusion, we present evidence for a cognate interaction between B-1 cells and phosphatidylcholine liposomes, modulating the immune response to encapsulated antigens. This provides a novel targeting approach to assess the role of B-1 cells in humoral immunity.


Subject(s)
Antigens/immunology , B-Lymphocyte Subsets/immunology , Adjuvants, Immunologic , Animals , Antibodies/immunology , Antibody Formation/immunology , Antibody Specificity , Antigens/chemistry , B-Lymphocyte Subsets/metabolism , Cell Movement , Female , Immunization , Liposomes , Mice , Ovalbumin/immunology , Phosphatidylcholines/chemistry , Phosphatidylcholines/immunology , Spleen/immunology
SELECTION OF CITATIONS
SEARCH DETAIL