Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686076

ABSTRACT

Bacterial infection has traditionally been treated with antibiotics, but their overuse is leading to the development of antibiotic resistance. This may be mitigated by alternative approaches to prevent or treat bacterial infections without utilization of antibiotics. Among the alternatives is the use of photo-responsive antimicrobial nanoparticles and/or nanocomposites, which present unique properties activated by light. In this study, we explored the combined use of titanium oxide and polydopamine to create nanoparticles with photocatalytic and photothermal antibacterial properties triggered by visible or near-infrared light. Furthermore, as a proof-of-concept, these photo-responsive nanoparticles were combined with mussel-inspired catechol-modified hyaluronic acid hydrogels to form novel light-driven antibacterial nanocomposites. The materials were challenged with models of Gram-negative and Gram-positive bacteria. For visible light, the average percentage killed (PK) was 94.6 for E. coli and 92.3 for S. aureus. For near-infrared light, PK for E. coli reported 52.8 and 99.2 for S. aureus. These results confirm the exciting potential of these nanocomposites to prevent the development of antibiotic resistance and also to open the door for further studies to optimize their composition in order to increase their bactericidal efficacy for biomedical applications.


Subject(s)
Anti-Infective Agents , Nanocomposites , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Infrared Rays
2.
Front Physiol ; 13: 819767, 2022.
Article in English | MEDLINE | ID: mdl-35283767

ABSTRACT

In the era of the advanced nanomaterials, use of nanoparticles has been highlighted in biomedical research. However, the demonstration of DNA plasmid delivery with nanoparticles for in vivo gene delivery experiments must be carefully tested due to many possible issues, including toxicity. The purpose of the current study was to deliver a Notch Intracellular Domain (NICD)-encoded plasmid via poly(lactic-co-glycolic acid) (PLGA) nanoparticles and to investigate the toxic environmental side effects for an in vivo experiment. In addition, we demonstrated the target delivery to the endothelium, including the endocardial layer, which is challenging to manipulate gene expression for cardiac functions due to the beating heart and rapid blood pumping. For this study, we used a zebrafish animal model and exposed it to nanoparticles at varying concentrations to observe for specific malformations over time for toxic effects of PLGA nanoparticles as a delivery vehicle. Our nanoparticles caused significantly less malformations than the positive control, ZnO nanoparticles. Additionally, the NICD plasmid was successfully delivered by PLGA nanoparticles and significantly increased Notch signaling related genes. Furthermore, our image based deep-learning analysis approach evaluated that the antibody conjugated nanoparticles were successfully bound to the endocardium to overexpress Notch related genes and improve cardiac function such as ejection fraction, fractional shortening, and cardiac output. This research demonstrates that PLGA nanoparticle-mediated target delivery to upregulate Notch related genes which can be a potential therapeutic approach with minimum toxic effects.

3.
Prog Biophys Mol Biol ; 167: 18-25, 2021 12.
Article in English | MEDLINE | ID: mdl-34619250

ABSTRACT

Applications of mathematical models to developmental biology have provided helpful insight into various subfields, ranging from the patterning of animal skin to the development of complex organ systems. Systems involved in patterning within morphology present a unique path to explain self-organizing systems. Current efforts show that patterning systems, notably Reaction-Diffusion and specific signaling pathways, provide insight for explaining morphology and could provide novel applications revolving around the formation of biological systems. Furthermore, the application of pattern formation provides a new perspective on understanding developmental biology and pathology research to study molecular mechanisms. The current review is to cover and take a more in-depth overlook at current applications of patterning systems while also building on the principles of patterning of future research in predictive medicine.


Subject(s)
Body Patterning , Models, Biological , Animals , Developmental Biology , Diffusion , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...