Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(11): 16453-16472, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321273

ABSTRACT

The synthesis and characterization of a hydrochar/CeO2 composite along with its evaluation in methylene blue degradation under visible light are presented. The methodology consisted of a single-pass hydrothermal method, having as synthesis conditions 9 h of reaction time, 210 °C, autogenous pressure, and a biomass/CeO2 ratio of 100:1. The composite characterization revealed good dispersion of CeO2 in the carbonaceous matrix and significant synergy in the composite activation using visible irradiation. The photodegradation experiments showed an efficiency of 98% for white LED light, 91% for UV light, 96% for solar irradiation, and 85% for blue LED light using as conditions pH 7.0, 50 mg of composite, 50 mL of solution, 10 mg/L of dye initial concentration, and 120 min of contact time. Meanwhile, the reusability experiments evidenced a reuse capacity of up to five times with a constant photodegradation efficiency (99%); moreover, it was determined that the presence of electrolytes at pH below 7.0 during degradation negatively affected methylene blue degradation. Finally, the results of this work demonstrate that the hydrochar/CeO2 composite can be synthesized by a green method and used for the efficient treatment of water contaminated with methylene blue.


Subject(s)
Light , Methylene Blue , Methylene Blue/chemistry , Ultraviolet Rays , Photolysis , Blue Light
2.
Article in English | MEDLINE | ID: mdl-37704815

ABSTRACT

In the present research, the presence of water hyacinth (Eichhornia crassipes) on the surface of the San Jose Dam located in the city of San Luis Potosi, S.L.P, Mexico, was monitored and mapped. The monitoring was conducted for 2 years (2018-2020) with remote sensing data from OLI Landsat 8 sensors, based on the normalized difference vegetation index (NDVI). The results demonstrated the capability and accuracy of this method, where it was observed that the aboveground cover area, proliferation, and distribution of water hyacinth are influenced by climatic and anthropogenic factors during the four seasons of the year. As part of a sustainable environmental control of this invasive species, the use of water hyacinth (WH) root (RO), stem (ST), and leaf (LE) components as adsorbent material for Pb(II) present in aqueous solution was proposed. The maximum adsorption capacity was observed at pH 5 and 25 °C and was 107.3, 136.8, and 120.8 mg g-1 for RO, ST, and LE, respectively. The physicochemical characterization of WH consisted of scanning electron microscopy (SEM), N2 physisorption, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), charge distribution, and zero charge point (pHPZC). Due to the chemical nature of WH, several Pb(II) adsorption mechanisms were proposed such as electrostatic attractions, ion exchange, microprecipitation, and π-cation.

3.
Nanomaterials (Basel) ; 13(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446493

ABSTRACT

In this work, the extraction of vanadium (V) ions from an alkaline solution using a commercial quaternary ammonium salt and the production of metal vanadates through precipitation stripping were carried out. The crystallization of copper vanadates from the extracts was performed using a solution containing a copper(II) source in concentrated chloride media as a stripping agent. In an attempt to control growth, a stabilizing polymer (polyvinylpyrrolidone, PVP) was added to the stripping solution. The structural characteristics of the crystallized products, mainly copper pyrovanadate (volborthite, Cu3V2O7(OH)2·(H2O)2) nanoflakes and nanoflowers and the experimental parameter influencing the efficiency of the stripping process were studied. From the results, the synthesis of nanostructured vanadates is a simple and versatile method for the fabrication of valuable three-dimensional structures providing abundant active zones for energy and catalytic applications.

4.
Nanomaterials (Basel) ; 14(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202493

ABSTRACT

Cobalt, nickel, manganese and zinc vanadates were synthesized by a hydrometallurgical two-phase method. The extraction of vanadium (V) ions from alkaline solution using Aliquat® 336 was followed by the production of metal vanadates through precipitation stripping. Precipitation stripping was carried out using solutions of the corresponding metal ions (Ni (II), Co (II), Mn (II) and Zn (II), 0.05 mol/L in 4 mol/L NaCl), and the addition time of the strip solution was varied (0, 1 and 2 h). The time-dependent experiments showed a notable influence on the composition, structure, morphology and crystallinity of the two-dimensional vanadate products. Inspired by these findings, we selected two metallic vanadate products and studied their properties as alternative cathode materials for nonaqueous sodium and lithium metal batteries.

5.
Article in English | MEDLINE | ID: mdl-36250290

ABSTRACT

This work characterizes two alternative materials to substitute the most expensive microbial fuel cells (MFCs) components: proton exchange membrane (PEM) and cathode. Crude glycerol biodegradation was studied in MFCs using a clay cup as a PEM and activated carbon and camphor carbon mixture (CAC) as a cathode. The cathode performance was compared with Platinum on carbon cloth. Two clay cup single-chamber MFCs were operated with each cathode and fed with 2000 mg/L of crude glycerol. Electrochemical properties were characterized by linear sweep voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. Biodegradation efficiencies were estimated with the chemical oxygen demand (COD) removal percentage. MFCs with CAC showed a maximum power density of 100 mW/m2. This result was a 43.47% power response regarding MFCs with Platinum. COD removal efficiencies of 94% were achieved in 37 days for both cells. The Columbic efficiencies were 24.04% and 22.78% for the MFCs with Platinum and CAC. The economic analysis showed a cost of USD 9.97 for MFCs with CAC. This cost is five times lower than when using Platinum. MFCs utilizing clay cups and CAC showed an acceptable performance for the bioenergy production from crude glycerol biodegradation above all economic advantage in the cell cost.


Subject(s)
Bioelectric Energy Sources , Protons , Glycerol , Charcoal , Clay , Camphor , Platinum , Electricity , Electrodes
6.
Materials (Basel) ; 15(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234150

ABSTRACT

The search for adsorbent materials with a certain chemical inertness, mechanical resistance, and high adsorption capacity, as is the case with alumina, is carried out with structural or surface modifications with the addition of additives or metallic salts. This research shows the synthesis, characterization, phase evolution and Cd(II) adsorbent capacity of α-Al2O3/Ba-ß-Al2O3 spheres obtained from α-Al2O3 nanopowders by the ion encapsulation method. The formation of the Ba-ß-Al2O3 phase is manifested at 1500 °C according to the infrared spectrum by the appearance of bands corresponding to AlO4 bonds and the appearance of peaks corresponding to Ba-O bonds in Raman spectroscopy. XRD determined the presence of BaO·Al2O3 at 1000 °C and the formation of Ba-ß-Al2O3 at 1600 °C. Scanning electron microscopy revealed the presence of spherical grains corresponding to α-Al2O3 and hexagonal plates corresponding to ß-Al2O3 in the spheres treated at 1600 °C. The spheres obtained have dimensions of 4.65 ± 0.30 mm in diameter, weight of 43 ± 2 mg and a surface area of 0.66 m2/g. According to the curve of pH vs. zeta potential, the spheres have an acid character and a negative surface charge of -30 mV at pH 5. Through adsorption studies, an adsorbent capacity of Cd(II) of 59.97 mg/g (87 ppm Cd(II)) was determined at pH 5, and the data were fitted to the pseudo first order, pseudo second order and Freundlich models, with correlation factors of 0.993, 0.987 and 0.998, respectively.

7.
Article in English | MEDLINE | ID: mdl-34086520

ABSTRACT

Ibuprofen degradation and energy generation in a single-chamber Microbial Fuel Cell (MFC) were evaluated using a bioanode fabricated from devil fish bone char (BCA) synthesized by calcination in air atmosphere. Its performance was compared with conventional carbon felt (CF). Bone char textural properties were determined by nitrogen adsorption. Before and after, the bacterial colonization on the materials was analyzed by environmental scanning electron microscopy. Energy generation was evaluated by electrochemical techniques as open-circuit potential, linear sweep voltammetry, and electrochemical impedance spectroscopy. Ibuprofen degradation was analyzed by High-Performance Liquid Chromatography-Ultraviolet, and the chemical oxygen demand (COD) removal was measured. Results showed a specific area of 136 m2/g for BCA, having enough space to immobilize microorganisms. The micrographs confirmed the biofilm formation on the electrode materials. Over the 14 days, MFC with BCA reached a maximum power density of 4.26 mW/m2, 175% higher than CF, and an electron transfer resistance 2.1 times lower than it. This coincides with the COD removal and ibuprofen degradation efficiencies, which were 43.6% and 34% for BCA and 31.8% and 27% for CF. Hence, these findings confirmed that BCA in MFC could provide an alternative electrode material for ibuprofen degradation and energy generation.


Subject(s)
Bioelectric Energy Sources , Biological Oxygen Demand Analysis , Carbon , Electricity , Electrodes , Ibuprofen
8.
Int J Biol Macromol ; 183: 2293-2304, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34097967

ABSTRACT

In this work, the synthesis of crosslinked chitosan hydrogels was performed by ionic and covalent interactions using tripolyphosphate (TPP) and formaldehyde (CH2O), respectively. The hydrogels synthesis was performed using a D-Optimal combined experiment design with two mixing variables, A and B representing the TPP weight fraction (slack variable) and CH2O weight fraction, respectively, and three (3) process variables C-chitosan concentration, D-cross-linker concentration, and E-Contact time. The response variables studied were the point of zero charge (pHPZC), the swelling ratio (SW), and the equilibrium water content (EWC), which are relevant physicochemical properties in applications such as the pollutant removal from water. According to the ANOVA results, the model obtained was significant; this means it can be adequately used to predicting pHPZC, SW, and EWC from the mixing and process variables, obtaining coefficients of determination R2 of 0.9572, 0.8900, and 0.8447, respectively. The pHPZC is affected by chitosan concentration, while the crosslinker concentration influences the SW, and the contact time most significantly affected the EWC. Morphology and hardness tests, thermal stability, infrared spectroscopy, and scanning electron microscopy, allowed verifying the types of crosslinking of chitosan with TPP and CH2O.


Subject(s)
Chitosan/chemistry , Cross-Linking Reagents/chemistry , Formaldehyde/chemistry , Polyphosphates/chemistry , Hardness , Hydrogels , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Surface Properties , Temperature , Time Factors
9.
J Alzheimers Dis ; 76(4): 1527-1539, 2020.
Article in English | MEDLINE | ID: mdl-32716353

ABSTRACT

BACKGROUND: Iron nanoparticles, mainly in magnetite phase (Fe3O4 NPs), are released to the environment in areas with high traffic density and braking frequency. Fe3O4 NPs were found in postmortem human brains and are assumed to get directly into the brain through the olfactory nerve. However, these pollution-derived NPs may also translocate from the lungs to the bloodstream and then, through the blood-brain barrier (BBB), into the brain inducing oxidative and inflammatory responses that contribute to neurodegeneration. OBJECTIVE: To describe the interaction and toxicity of pollution-derived Fe3O4 NPs on primary rat brain microvascular endothelial cells (rBMECs), main constituents of in vitro BBB models. METHODS: Synthetic bare Fe3O4 NPs that mimic the environmental ones (miFe3O4) were synthesized by co-precipitation and characterized using complementary techniques. The rBMECs were cultured in Transwell® plates. The NPs-cell interaction was evaluated through transmission electron microscopy and standard colorimetric in vitro assays. RESULTS: The miFe3O4 NPs, with a mean diameter of 8.45±0.14 nm, presented both magnetite and maghemite phases, and showed super-paramagnetic properties. Results suggest that miFe3O4 NPs are internalized by rBMECs through endocytosis and that they are able to cross the cells monolayer. The lowest miFe3O4 NPs concentration tested induced mid cytotoxicity in terms of 1) membrane integrity (LDH release) and 2) metabolic activity (MTS transformation). CONCLUSION: Pollution-derived Fe3O4 NPs may interact and cross the microvascular endothelial cells forming the BBB and cause biological damage.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Injuries/chemically induced , Endothelial Cells/drug effects , Magnetic Iron Oxide Nanoparticles , Nanoparticles/toxicity , Biological Transport/drug effects , Blood-Brain Barrier/injuries , Blood-Brain Barrier/pathology , Brain/drug effects , Brain/metabolism , Cells, Cultured , Endocytosis/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans
10.
J Environ Manage ; 256: 109956, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31818750

ABSTRACT

In this study, bone char (BC) from pleco fish (Pterygoplichthys spp.) was synthesized, and their textural and physicochemical properties, as well as its adsorption capacity towards fluoride and Cd(II) from single and binary aqueous solutions, were determined. The results showed that the properties of the BCs were independent of the type of bone used and the surface areas were close to 110 m2 g-1. The effect of solution pH revealed that the adsorption capacity of BC towards fluoride from water raised by decreasing the solution pH. This trend was attributed to the electrostatic interaction between the positively charged surface and the fluoride in aqueous solution. On the contrary, the capacity of BC for adsorbing Cd(II) was enhanced by increasing the solution pH, indicating that electrostatic interactions were also essential but with a contrary effect in comparison with fluoride adsorption due to the negatively charged surface at pH above the point zero charge (pHPZC = 8.16). The experimental data for binary adsorption of fluoride and Cd(II) were interpreted satisfactorily using the modified Freundlich multicomponent isotherm (EFMI), and the experimental data revealed that Cd(II) have an antagonistic effect on the adsorption of fluoride, whereas the presence of fluoride does not affect the capacity of BC for adsorbing Cd(II). Thermogravimetric, XRD diffraction and IR spectroscopy analysis corroborated that the adsorption of fluoride in BC is due to electrostatic attractions, ion exchange or chemisorption and physisorption. Besides, the removal of Cd(II) occurs by physical adsorption and ion exchange. It was concluded that BC is an alternative material for the removal of fluoride and Cd(II) from aqueous solutions, and it is a possible application for using the bones of this invasive fish species.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Animals , Cadmium , Fluorides , Hydrogen-Ion Concentration , Introduced Species , Kinetics , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...