Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 112(21): 6551-5, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25964321

ABSTRACT

Coffinite, USiO4, is an important U(IV) mineral, but its thermodynamic properties are not well-constrained. In this work, two different coffinite samples were synthesized under hydrothermal conditions and purified from a mixture of products. The enthalpy of formation was obtained by high-temperature oxide melt solution calorimetry. Coffinite is energetically metastable with respect to a mixture of UO2 (uraninite) and SiO2 (quartz) by 25.6 ± 3.9 kJ/mol. Its standard enthalpy of formation from the elements at 25 °C is -1,970.0 ± 4.2 kJ/mol. Decomposition of the two samples was characterized by X-ray diffraction and by thermogravimetry and differential scanning calorimetry coupled with mass spectrometric analysis of evolved gases. Coffinite slowly decomposes to U3O8 and SiO2 starting around 450 °C in air and thus has poor thermal stability in the ambient environment. The energetic metastability explains why coffinite cannot be synthesized directly from uraninite and quartz but can be made by low-temperature precipitation in aqueous and hydrothermal environments. These thermochemical constraints are in accord with observations of the occurrence of coffinite in nature and are relevant to spent nuclear fuel corrosion.

2.
Proc Natl Acad Sci U S A ; 111(50): 17737-42, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25422465

ABSTRACT

Metastudtite, (UO2)O2(H2O)2, is one of two known natural peroxide minerals, but little is established about its thermodynamic stability. In this work, its standard enthalpy of formation, -1,779.6 ± 1.9 kJ/mol, was obtained by high temperature oxide melt drop solution calorimetry. Decomposition of synthetic metastudtite was characterized by thermogravimetry and differential scanning calorimetry (DSC) with ex situ X-ray diffraction analysis. Four decomposition steps were observed in oxygen atmosphere: water loss around 220 °C associated with an endothermic heat effect accompanied by amorphization; another water loss from 400 °C to 530 °C; oxygen loss from amorphous UO3 to crystallize orthorhombic α-UO2.9; and reduction to crystalline U3O8. This detailed characterization allowed calculation of formation enthalpy from heat effects on decomposition measured by DSC and by transposed temperature drop calorimetry, and both these values agree with that from drop solution calorimetry. The data explain the irreversible transformation from studtite to metastudtite, the conditions under which metastudtite may form, and its significant role in the oxidation, corrosion, and dissolution of nuclear fuel in contact with water.

3.
Environ Sci Technol ; 48(1): 854-60, 2014.
Article in English | MEDLINE | ID: mdl-24289534

ABSTRACT

The miscibility behavior of the USiO4-ThSiO4 system was investigated. The end members and 10 solid solutions UxTh(1-x)SiO4 with x = 0.12-0.92 were successfully synthesized, without formation of other secondary uranium or thorium phases. Lattice parameters of the solid solutions evidently follow Vegard's Law. Investigation of the local structure with EXAFS reveals small differences between the U and Th environment attributed to different atomic radii of the metal atoms but no implications for a miscibility gap. The data provided confirm complete miscibility for the system USiO4-ThSiO4. The structure of the end members was studied in detail with XRD and discussed with special regard to the oxygen positions and the often neglected Si-O bond length. USiO4 could be obtained without UO2 impurities and the lattice parameters derived from Rietveld refinement as c = 6.2606(3) Å and a = 6.9841(3) Å. The Si-O distance in USiO4 appears to be 1.64 Å, which is more reasonable than earlier reported values.


Subject(s)
Silicates/chemistry , Silicates/chemical synthesis , Thorium/chemistry , Uranium/chemistry , Crystallography, X-Ray , Oxygen/chemistry , Solutions , X-Ray Absorption Spectroscopy , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...