Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
APL Bioeng ; 8(1): 016108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38352162

ABSTRACT

Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly form in blood vessels of the central nervous system upon loss of the CCM multimeric protein complex. The endothelial cells within CCM lesions are characterized by overactive MEKK3 kinase and KLF2/4 transcription factor signaling, leading to pathological changes such as increased endothelial cell spreading and reduced junctional integrity. Concomitant to aberrant endothelial cell signaling, non-autonomous signals from the extracellular matrix (ECM) have also been implicated in CCM lesion growth and these factors might explain why CCM lesions mainly develop in the central nervous system. Here, we adapted a three-dimensional microfluidic system to examine CCM1 deficient human micro-vessels in distinctive extracellular matrices. We validate that pathological hallmarks are maintained in this model. We further show that key genes responsible for homeostasis of hyaluronic acid, a major extracellular matrix component of the central nervous system, are dysregulated in CCM. Supplementing the matrix in our model with distinct forms of hyaluronic acid inhibits pathological cell spreading and rescues barrier function. Hyaluronic acid acts by dampening cell-matrix adhesion signaling in CCM, either downstream or in parallel of KLF2/4. This study provides a proof-of-principle that ECM embedded 3D microfluidic models are ideally suited to identify how changes in ECM structure and signaling impact vascular malformations.

2.
Life Sci Alliance ; 6(10)2023 10.
Article in English | MEDLINE | ID: mdl-37558421

ABSTRACT

The noncanonical inflammasome is a signalling complex critical for cell defence against cytosolic Gram-negative bacteria. A key step in the human noncanonical inflammasome pathway involves unleashing the proteolytic activity of caspase-4 within this complex. Caspase-4 induces inflammatory responses by cleaving gasdermin-D (GSDMD) to initiate pyroptosis; however, the molecular mechanisms that activate caspase-4 and govern its capacity to cleave substrates remain poorly defined. Caspase-11, the murine counterpart of caspase-4, acquires protease activity within the noncanonical inflammasome by forming a dimer that self-cleaves at D285 to cleave GSDMD. These cleavage events trigger signalling via the NLRP3-ASC-caspase-1 axis, leading to downstream cleavage of the pro-IL-1ß cytokine precursor. Here, we show that caspase-4 first dimerises then self-cleaves at two sites-D270 and D289-in the interdomain linker to acquire full proteolytic activity, cleave GSDMD, and induce cell death. Surprisingly, caspase-4 dimerisation and self-cleavage at D289 generate a caspase-4 p34/p9 protease species that directly cleaves pro-IL-1ß, resulting in its maturation and secretion independently of the NLRP3 inflammasome in primary human myeloid and epithelial cells. Our study thus elucidates the key molecular events that underpin signalling by the caspase-4 inflammasome and identifies IL-1ß as a natural substrate of caspase-4.


Subject(s)
Caspases, Initiator , Gasdermins , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Humans , Mice , Caspase 1/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Caspases, Initiator/metabolism , Gasdermins/metabolism
3.
Sci Signal ; 16(782): eabq1366, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37098119

ABSTRACT

Macrophages are key cellular contributors to the pathogenesis of COVID-19, the disease caused by the virus SARS-CoV-2. The SARS-CoV-2 entry receptor ACE2 is present only on a subset of macrophages at sites of SARS-CoV-2 infection in humans. Here, we investigated whether SARS-CoV-2 can enter macrophages, replicate, and release new viral progeny; whether macrophages need to sense a replicating virus to drive cytokine release; and, if so, whether ACE2 is involved in these mechanisms. We found that SARS-CoV-2 could enter, but did not replicate within, ACE2-deficient human primary macrophages and did not induce proinflammatory cytokine expression. By contrast, ACE2 overexpression in human THP-1-derived macrophages permitted SARS-CoV-2 entry, processing and replication, and virion release. ACE2-overexpressing THP-1 macrophages sensed active viral replication and triggered proinflammatory, antiviral programs mediated by the kinase TBK-1 that limited prolonged viral replication and release. These findings help elucidate the role of ACE2 and its absence in macrophage responses to SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Cytokines , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Macrophages/metabolism , Virion/metabolism
4.
Cell Host Microbe ; 31(2): 168-170, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36758516

ABSTRACT

The cellular and molecular sources of elevated IL-1ß and IL-6 in COVID-19 remain unclear. In this issue of Cell Host and Microbe, Barnett et al. determine how immune cells sense SARS-CoV-2 infection in neighboring epithelial cells to trigger inflammasome signaling and IL-1ß release, which in turn promotes IL-6 release.


Subject(s)
COVID-19 , Inflammasomes , Humans , NLR Family, Pyrin Domain-Containing 3 Protein , Interleukin-6 , SARS-CoV-2 , Interleukin-1beta
5.
Biochem Soc Trans ; 51(1): 303-313, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36695550

ABSTRACT

Programmed cell death is a critical host defence strategy during viral infection. Neighbouring cells deal with this death in distinct ways depending on how the infected cell dies. While apoptosis is considered immunologically silent, the lytic pathways of necroptosis and pyroptosis trigger inflammatory responses by releasing inflammatory host molecules. All these pathways have been implicated in influenza A virus infection. Here, we review how cells sense neighbouring infection and death and how sensing shapes ensuing inflammatory responses.


Subject(s)
Apoptosis , Pyroptosis , Cell Death , Necroptosis , Macrophages
6.
PLoS Biol ; 20(8): e3001728, 2022 08.
Article in English | MEDLINE | ID: mdl-35913989

ABSTRACT

Children typically experience more mild symptoms of Coronavirus Disease 2019 (COVID-19) when compared to adults. There is a strong body of evidence that children are also less susceptible to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with the ancestral viral isolate. However, the emergence of SARS-CoV-2 variants of concern (VOCs) has been associated with an increased number of pediatric infections. Whether this is the result of widespread adult vaccination or fundamental changes in the biology of SARS-CoV-2 remain to be determined. Here, we use primary nasal epithelial cells (NECs) from children and adults, differentiated at an air-liquid interface to show that the ancestral SARS-CoV-2 replicates to significantly lower titers in the NECs of children compared to those of adults. This was associated with a heightened antiviral response to SARS-CoV-2 in the NECs of children. Importantly, the Delta variant also replicated to significantly lower titers in the NECs of children. This trend was markedly less pronounced in the case of Omicron. It is also striking to note that, at least in terms of viral RNA, Omicron replicated better in pediatric NECs compared to both Delta and the ancestral virus. Taken together, these data show that the nasal epithelium of children supports lower infection and replication of ancestral SARS-CoV-2, although this may be changing as the virus evolves.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Epithelial Cells , Humans , SARS-CoV-2/genetics
7.
Clin Transl Immunology ; 10(10): e1350, 2021.
Article in English | MEDLINE | ID: mdl-34721846

ABSTRACT

OBJECTIVES: Thrombotic and microvascular complications are frequently seen in deceased COVID-19 patients. However, whether this is caused by direct viral infection of the endothelium or inflammation-induced endothelial activation remains highly contentious. METHODS: Here, we use patient autopsy samples, primary human endothelial cells and an in vitro model of the pulmonary epithelial-endothelial cell barrier. RESULTS: We show that primary human endothelial cells express very low levels of the SARS-CoV-2 receptor ACE2 and the protease TMPRSS2, which blocks their capacity for productive viral infection, and limits their capacity to produce infectious virus. Accordingly, endothelial cells can only be infected when they overexpress ACE2, or are exposed to very high concentrations of SARS-CoV-2. We also show that SARS-CoV-2 does not infect endothelial cells in 3D vessels under flow conditions. We further demonstrate that in a co-culture model endothelial cells are not infected with SARS-CoV-2. Endothelial cells do however sense and respond to infection in the adjacent epithelial cells, increasing ICAM-1 expression and releasing pro-inflammatory cytokines. CONCLUSIONS: Taken together, these data suggest that in vivo, endothelial cells are unlikely to be infected with SARS-CoV-2 and that infection may only occur if the adjacent pulmonary epithelium is denuded (basolateral infection) or a high viral load is present in the blood (apical infection). In such a scenario, whilst SARS-CoV-2 infection of the endothelium can occur, it does not contribute to viral amplification. However, endothelial cells may still play a key role in SARS-CoV-2 pathogenesis by sensing adjacent infection and mounting a pro-inflammatory response to SARS-CoV-2.

8.
Front Immunol ; 12: 770066, 2021.
Article in English | MEDLINE | ID: mdl-34777390

ABSTRACT

Acute inflammation is a critical host defense response during viral infection. When dysregulated, inflammation drives immunopathology and tissue damage. Excessive, damaging inflammation is a hallmark of both pandemic influenza A virus (IAV) infections and Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infections. Chronic, low-grade inflammation is also a feature of obesity. In recent years, obesity has been recognized as a growing pandemic with significant mortality and associated costs. Obesity is also an independent risk factor for increased disease severity and death during both IAV and SARS-CoV-2 infection. This review focuses on the effect of obesity on the inflammatory response in the context of viral respiratory infections and how this leads to increased viral pathology. Here, we will review the fundamentals of inflammation, how it is initiated in IAV and SARS-CoV-2 infection and its link to disease severity. We will examine how obesity drives chronic inflammation and trained immunity and how these impact the immune response to IAV and SARS-CoV-2. Finally, we review both medical and non-medical interventions for obesity, how they impact on the inflammatory response and how they could be used to prevent disease severity in obese patients. As projections of global obesity numbers show no sign of slowing down, future pandemic preparedness will require us to consider the metabolic health of the population. Furthermore, if weight-loss alone is insufficient to reduce the risk of increased respiratory virus-related mortality, closer attention must be paid to a patient's history of health, and new therapeutic options identified.


Subject(s)
COVID-19/immunology , Inflammation/immunology , Influenza A virus , Influenza, Human/immunology , Obesity/immunology , SARS-CoV-2 , Animals , Humans , Severity of Illness Index
9.
EMBO J ; 38(21): e101365, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31468569

ABSTRACT

Inflammasomes are potent innate immune signalling complexes that couple cytokine release with pro-inflammatory cell death. However, pathogens have evolved strategies to evade this cell autonomous system. Here, we show how antibodies combine with innate sensors in primary human macrophages to detect viral infection and activate the inflammasome. Our data demonstrate that antibody opsonisation of virions can activate macrophages in multiple ways. In the first, antibody binding of adenovirus causes lysosomal damage, activating NLRP3 to drive inflammasome formation and IL-1ß release. Importantly, this mechanism enhances virion capture but not infection and is accompanied by cell death, denying the opportunity for viral replication. Unexpectedly, we also find that antibody-coated viruses, which successfully escape into the cytosol, trigger a second system of inflammasome activation. These viruses are intercepted by the cytosolic antibody receptor TRIM21 and the DNA sensor cGAS. Together, these sensors stimulate both NLRP3 inflammasome formation and NFκB activation, driving dose-dependent IL-1ß and TNF secretion, without inducing cell death. Our data highlight the importance of cooperativity between multiple sensing networks to expose viruses to the inflammasome pathway, which is particularly important for how our innate immune system responds to infection in the presence of pre-existing immunity.


Subject(s)
Adenoviridae Infections/immunology , Antibodies, Viral/immunology , Inflammasomes/immunology , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleotidyltransferases/metabolism , Ribonucleoproteins/metabolism , Virus Replication/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Adenoviridae Infections/metabolism , Adenoviridae Infections/virology , Animals , Cells, Cultured , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Macrophages/metabolism , Macrophages/virology , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nucleotidyltransferases/genetics , Ribonucleoproteins/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
10.
Immunity ; 50(4): 1099-1114.e10, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30876876

ABSTRACT

Inflammatory bowel disease is a chronic, relapsing condition with two subtypes, Crohn's disease (CD) and ulcerative colitis (UC). Genome-wide association studies (GWASs) in UC implicate a FCGR2A variant that alters the binding affinity of the antibody receptor it encodes, FcγRIIA, for immunoglobulin G (IgG). Here, we aimed to understand the mechanisms whereby changes in FcγRIIA affinity would affect inflammation in an IgA-dominated organ. We found a profound induction of anti-commensal IgG and a concomitant increase in activating FcγR signaling in the colonic mucosa of UC patients. Commensal-IgG immune complexes engaged gut-resident FcγR-expressing macrophages, inducing NLRP3- and reactive-oxygen-species-dependent production of interleukin-1ß (IL-1ß) and neutrophil-recruiting chemokines. These responses were modulated by the FCGR2A genotype. In vivo manipulation of macrophage FcγR signal strength in a mouse model of UC determined the magnitude of intestinal inflammation and IL-1ß-dependent type 17 immunity. The identification of an important contribution of IgG-FcγR-dependent inflammation to UC has therapeutic implications.


Subject(s)
Antibodies, Bacterial/immunology , Colitis, Ulcerative/immunology , Gastrointestinal Microbiome/immunology , Immunoglobulin G/immunology , Interleukin-1beta/immunology , Th17 Cells/immunology , Animals , Colitis/chemically induced , Colitis/immunology , Colitis/microbiology , Colitis/pathology , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Dextran Sulfate/toxicity , Gene Expression Regulation , Genotype , Humans , Inflammation , Interleukin-8/biosynthesis , Interleukin-8/genetics , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Macrophages/immunology , Mice , Phagocytes/immunology , RNA, Messenger/biosynthesis , Reactive Oxygen Species , Receptors, IgG/biosynthesis , Receptors, IgG/genetics , Receptors, IgG/immunology
11.
Annu Rev Med ; 69: 437-449, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29106805

ABSTRACT

The innate immune system plays diverse roles in health and disease. It represents the first line of defense against infection and is involved in tissue repair, wound healing, and clearance of apoptotic cells and cellular debris. Excessive or nonresolving innate immune activation can lead to systemic or local inflammatory complications and cause or contribute to the development of inflammatory diseases. In the brain, microglia represent the key innate immune cells, which are involved in brain development, brain maturation, and homeostasis. Impaired microglial function, either through aberrant activation or decreased functionality, can occur during aging and during neurodegeneration, and the resulting inflammation is thought to contribute to neurodegenerative diseases. This review highlights recent advances in our understanding of the influence of innate immunity on neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease.


Subject(s)
Immunity, Innate/immunology , Microglia/immunology , Neurodegenerative Diseases/immunology , Alzheimer Disease/immunology , Amyotrophic Lateral Sclerosis/immunology , Humans , Huntington Disease/immunology , Inflammation/immunology , Parkinson Disease/immunology
12.
Cell ; 171(7): 1692-1706.e18, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29153837

ABSTRACT

Methods for the targeted disruption of protein function have revolutionized science and greatly expedited the systematic characterization of genes. Two main approaches are currently used to disrupt protein function: DNA knockout and RNA interference, which act at the genome and mRNA level, respectively. A method that directly alters endogenous protein levels is currently not available. Here, we present Trim-Away, a technique to degrade endogenous proteins acutely in mammalian cells without prior modification of the genome or mRNA. Trim-Away harnesses the cellular protein degradation machinery to remove unmodified native proteins within minutes of application. This rapidity minimizes the risk that phenotypes are compensated and that secondary, non-specific defects accumulate over time. Because Trim-Away utilizes antibodies, it can be applied to a wide range of target proteins using off-the-shelf reagents. Trim-Away allows the study of protein function in diverse cell types, including non-dividing primary cells where genome- and RNA-targeting methods are limited.


Subject(s)
Antibodies/chemistry , Biochemistry/methods , Protein Transport , Proteolysis , Animals
13.
J Allergy Clin Immunol ; 138(1): 37-46, 2016 07.
Article in English | MEDLINE | ID: mdl-27373324

ABSTRACT

Interferons and the IL-1 family of cytokines have important roles in host defense against invading viruses and bacteria. Inflammasomes, multimeric cytosolic sensors of infection, are required for IL-1ß and IL-18 processing and release. Interferons, IL-1ß, and IL-18 are also implicated in autoimmune disease and chronic inflammation. Although independent but complementary pathways induce these cytokine subsets during infection, in some circumstances the cross-talk between these key inflammatory mediators is a particular requirement for effective host defense. In this review we will summarize recent discoveries concerning the potentiation of inflammasome responses by type I interferons, particularly in patients with gram-negative bacterial infections, and reflect on the molecular mechanisms of IFN-ß's immunosuppressive effects through modulation of inflammasome and IL-1ß signaling in patients with tuberculosis and multiple sclerosis.


Subject(s)
Inflammasomes/metabolism , Interferons/metabolism , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Caspases/metabolism , Host-Pathogen Interactions/immunology , Humans , Inflammation/etiology , Inflammation/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction
14.
Sci Transl Med ; 8(333): 333ra50, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27053774

ABSTRACT

Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-ß-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis.


Subject(s)
Atherosclerosis/drug therapy , Atherosclerosis/pathology , Macrophages/metabolism , beta-Cyclodextrins/therapeutic use , 2-Hydroxypropyl-beta-cyclodextrin , Animals , Atherosclerosis/genetics , Biological Transport/drug effects , Cholesterol/metabolism , Crystallization , Gene Expression Regulation/drug effects , Humans , Liver X Receptors/metabolism , Macrophages/drug effects , Mice , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , beta-Cyclodextrins/pharmacology
15.
J Immunol ; 195(9): 4446-55, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26416280

ABSTRACT

Cytokines and IFNs downstream of innate immune pathways are critical for mounting an appropriate immune response to microbial infection. However, the expression of these inflammatory mediators is tightly regulated, as uncontrolled production can result in tissue damage and lead to chronic inflammatory conditions and autoimmune diseases. Activating transcription factor 3 (ATF3) is an important transcriptional modulator that limits the inflammatory response by controlling the expression of a number of cytokines and chemokines. However, its role in modulating IFN responses remains poorly defined. In this study, we demonstrate that ATF3 expression in macrophages is necessary for governing basal IFN-ß expression, as well as the magnitude of IFN-ß cytokine production following activation of innate immune receptors. We found that ATF3 acted as a transcriptional repressor and regulated IFN-ß via direct binding to a previously unidentified specific regulatory site distal to the Ifnb1 promoter. Additionally, we observed that ATF3 itself is a type I IFN-inducible gene, and that ATF3 further modulates the expression of a subset of inflammatory genes downstream of IFN signaling, suggesting it constitutes a key component of an IFN negative feedback loop. Consistent with this, macrophages deficient in Atf3 showed enhanced viral clearance in lymphocytic choriomeningitis virus and vesicular stomatitis virus infection models. Our study therefore demonstrates an important role for ATF3 in modulating IFN responses in macrophages by controlling basal and inducible levels of IFNß, as well as the expression of genes downstream of IFN signaling.


Subject(s)
Activating Transcription Factor 3/genetics , Interferon-beta/genetics , Macrophages/metabolism , Transcriptome/genetics , Activating Transcription Factor 3/metabolism , Animals , Cells, Cultured , Dendritic Cells/drug effects , Dendritic Cells/metabolism , HEK293 Cells , Humans , Immunoblotting , Interferon-beta/metabolism , Interferon-beta/pharmacology , Macrophages/drug effects , Mice, Inbred C57BL , Mice, Knockout , Monocytes/drug effects , Monocytes/metabolism , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Protein Binding , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome/drug effects
16.
J Immunol ; 193(7): 3257-61, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25187660

ABSTRACT

Sensing of nucleic acids by TLRs is crucial in the host defense against viruses and bacteria. Unc-93 homolog B1 (UNC93B1) regulates the trafficking of nucleic acid-sensing TLRs from the endoplasmic reticulum to endolysosomes, where the TLRs encounter their respective ligands and become activated. In this article, we show that a carboxyl-terminal tyrosine-based sorting motif (YxxΦ) in UNC93B1 differentially regulates human nucleic acid-sensing TLRs in a receptor- and ligand-specific manner. Destruction of YxxΦ abolished TLR7, TLR8, and TLR9 activity toward nucleic acids in human B cells and monocytes, whereas TLR8 responses toward small molecules remained intact. YxxΦ in UNC93B1 influenced the subcellular localization of human UNC93B1 via both adapter protein complex (AP)1- and AP2-dependent trafficking pathways. However, loss of AP function was not causal for altered TLR responses, suggesting AP-independent functions of YxxΦ in UNC93B1.


Subject(s)
Adaptor Protein Complex 1/immunology , Adaptor Protein Complex 2/immunology , B-Lymphocytes/immunology , Membrane Transport Proteins/immunology , Monocytes/immunology , Toll-Like Receptors/immunology , Adaptor Protein Complex 1/genetics , Adaptor Protein Complex 2/genetics , Amino Acid Motifs , B-Lymphocytes/cytology , Cell Line, Tumor , HEK293 Cells , Humans , Membrane Transport Proteins/genetics , Monocytes/cytology , Protein Transport/genetics , Protein Transport/immunology , Toll-Like Receptors/genetics
17.
Nat Immunol ; 15(2): 152-60, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24317040

ABSTRACT

High-density lipoprotein (HDL) mediates reverse cholesterol transport and is known to be protective against atherosclerosis. In addition, HDL has potent anti-inflammatory properties that may be critical for protection against other inflammatory diseases. The molecular mechanisms of how HDL can modulate inflammation, particularly in immune cells such as macrophages, remain poorly understood. Here we identify the transcriptional regulator ATF3, as an HDL-inducible target gene in macrophages that downregulates the expression of Toll-like receptor (TLR)-induced proinflammatory cytokines. The protective effects of HDL against TLR-induced inflammation were fully dependent on ATF3 in vitro and in vivo. Our findings may explain the broad anti-inflammatory and metabolic actions of HDL and provide the basis for predicting the success of new HDL-based therapies.


Subject(s)
Activating Transcription Factor 3/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Atherosclerosis/therapy , Cholesterol/metabolism , Inflammation/therapy , Lipoproteins, HDL/therapeutic use , Macrophages/drug effects , Activating Transcription Factor 3/genetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cells, Cultured , Chromatin Immunoprecipitation , Cytokines/metabolism , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Lipoproteins, HDL/pharmacology , Macrophage Activation/drug effects , Macrophages/immunology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Systems Biology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
18.
J Biol Chem ; 288(35): 25362-25374, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23853092

ABSTRACT

Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target.


Subject(s)
Gene Expression Regulation , Histone Deacetylases/metabolism , Macrophages/metabolism , Toll-Like Receptor 4/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Histone Deacetylases/genetics , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , Macrophages/pathology , Mice , Signal Transduction/drug effects , Signal Transduction/genetics , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/genetics
19.
Proc Natl Acad Sci U S A ; 109(16): E944-53, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22451944

ABSTRACT

Evolutionary change in gene expression is generally considered to be a major driver of phenotypic differences between species. We investigated innate immune diversification by analyzing interspecies differences in the transcriptional responses of primary human and mouse macrophages to the Toll-like receptor (TLR)-4 agonist lipopolysaccharide (LPS). By using a custom platform permitting cross-species interrogation coupled with deep sequencing of mRNA 5' ends, we identified extensive divergence in LPS-regulated orthologous gene expression between humans and mice (24% of orthologues were identified as "divergently regulated"). We further demonstrate concordant regulation of human-specific LPS target genes in primary pig macrophages. Divergently regulated orthologues were enriched for genes encoding cellular "inputs" such as cell surface receptors (e.g., TLR6, IL-7Rα) and functional "outputs" such as inflammatory cytokines/chemokines (e.g., CCL20, CXCL13). Conversely, intracellular signaling components linking inputs to outputs were typically concordantly regulated. Functional consequences of divergent gene regulation were confirmed by showing LPS pretreatment boosts subsequent TLR6 responses in mouse but not human macrophages, in keeping with mouse-specific TLR6 induction. Divergently regulated genes were associated with a large dynamic range of gene expression, and specific promoter architectural features (TATA box enrichment, CpG island depletion). Surprisingly, regulatory divergence was also associated with enhanced interspecies promoter conservation. Thus, the genes controlled by complex, highly conserved promoters that facilitate dynamic regulation are also the most susceptible to evolutionary change.


Subject(s)
Gene Expression Profiling , Genetic Variation , Macrophages/metabolism , Toll-Like Receptor 4/genetics , Animals , Cell Line , Cells, Cultured , Chemokine CCL20/genetics , Chemokine CXCL13/genetics , Evolution, Molecular , Female , Gene Expression Regulation/drug effects , Host-Pathogen Interactions , Humans , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/microbiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Salmonella typhimurium/physiology , Species Specificity , Swine , Toll-Like Receptor 4/agonists
20.
J Leukoc Biol ; 87(6): 1103-14, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20200406

ABSTRACT

Broad-spectrum inhibitors of HDACs are therapeutic in many inflammatory disease models but exacerbated disease in a mouse model of atherosclerosis. HDAC inhibitors have anti- and proinflammatory effects on macrophages in vitro. We report here that several broad-spectrum HDAC inhibitors, including TSA and SAHA, suppressed the LPS-induced mRNA expression of the proinflammatory mediators Edn-1, Ccl-7/MCP-3, and Il-12p40 but amplified the expression of the proatherogenic factors Cox-2 and Pai-1/serpine1 in primary mouse BMM. Similar effects were also apparent in LPS-stimulated TEPM and HMDM. The pro- and anti-inflammatory effects of TSA were separable over a concentration range, implying that individual HDACs have differential effects on macrophage inflammatory responses. The HDAC1-selective inhibitor, MS-275, retained proinflammatory effects (amplification of LPS-induced expression of Cox-2 and Pai-1 in BMM) but suppressed only some inflammatory responses. In contrast, 17a (a reportedly HDAC6-selective inhibitor) retained anti-inflammatory but not proinflammatory properties. Despite this, HDAC6(-/-) macrophages showed normal LPS-induced expression of HDAC-dependent inflammatory genes, arguing that the anti-inflammatory effects of 17a are not a result of inhibition of HDAC6 alone. Thus, 17a provides a tool to identify individual HDACs with proinflammatory properties.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/chemistry , Inflammation/immunology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Toll-Like Receptor 4/agonists , Animals , Blotting, Western , Chromatin Immunoprecipitation , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Enzyme-Linked Immunosorbent Assay , Histone Deacetylase 6 , Histone Deacetylases/physiology , Hydroxamic Acids/pharmacology , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/metabolism , Luciferases/metabolism , Macrophages/cytology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptor 4/metabolism , Vorinostat
SELECTION OF CITATIONS
SEARCH DETAIL
...