Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 346, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509307

ABSTRACT

The 5/6 nephrectomy and adenine-induced nephropathy mouse models have been extensively used to study Chronic Kidney Disease (CKD)-related cachexia. One common caveat of these CKD models is the cross-sectional nature of comparisons made versus controls. We here performed a comprehensive longitudinal assessment of body composition and energy metabolism in both models. The most striking finding is that weight loss is largely driven by reduced food intake which promotes rapid loss of lean and fat mass. However, in both models, mice catch up weight and lean mass a few days after the surgery or when they are switched back to standard chow diet. Muscle force and mass are fully recovered and no sign of cachexia is observed. Our data demonstrate that the time-course of kidney failure and weight loss are unrelated in these common CKD models. These data highlight the need to reconsider the relative contribution of direct and indirect mechanisms to muscle wasting observed in CKD.


Subject(s)
Cachexia , Renal Insufficiency, Chronic , Animals , Mice , Cachexia/complications , Cachexia/metabolism , Cross-Sectional Studies , Renal Insufficiency, Chronic/complications , Weight Loss , Body Composition/physiology
2.
Nat Aging ; 4(1): 80-94, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38238601

ABSTRACT

Skeletal muscle plays a central role in the regulation of systemic metabolism during lifespan. With aging, this function is perturbed, initiating multiple chronic diseases. Our knowledge of mechanisms responsible for this decline is limited. Glycerophosphocholine phosphodiesterase 1 (Gpcpd1) is a highly abundant muscle enzyme that hydrolyzes glycerophosphocholine (GPC). The physiological functions of Gpcpd1 remain largely unknown. Here we show, in mice, that the Gpcpd1-GPC metabolic pathway is perturbed in aged muscles. Further, muscle-specific, but not liver- or fat-specific, inactivation of Gpcpd1 resulted in severely impaired glucose metabolism. Western-type diets markedly worsened this condition. Mechanistically, Gpcpd1 muscle deficiency resulted in accumulation of GPC, causing an 'aged-like' transcriptomic signature and impaired insulin signaling in young Gpcpd1-deficient muscles. Finally, we report that the muscle GPC levels are markedly altered in both aged humans and patients with type 2 diabetes, displaying a high positive correlation between GPC levels and chronological age. Our findings reveal that the muscle GPCPD1-GPC metabolic pathway has an important role in the regulation of glucose homeostasis and that it is impaired during aging, which may contribute to glucose intolerance in aging.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Glycerylphosphorylcholine , Phospholipases , Aged , Animals , Humans , Mice , Aging/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Metabolic Networks and Pathways , Muscle, Skeletal/metabolism , Phospholipases/metabolism , Glycerylphosphorylcholine/metabolism
3.
Biochimie ; 210: 35-39, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36758717

ABSTRACT

The robustness of scientific results is partly based on their reproducibility. Working with animal models, particularly in the field of metabolism, requires to avoid any source of stress to rule out a maximum of bias. Housing at room temperature is sufficient to induce thermal stress activating key thermogenic organs such as brown adipose tissue (BAT) and skeletal muscle. BAT covers most of the non-shivering thermogenesis in mice and burns a variety of fuels such as glucose and lipids. A high prevalence of BAT is associated with a strong protection against type 2 diabetes risk in humans, implying that BAT plays a key role in glucose homeostasis. However, thermal stress is poorly and inconsistently considered in experimental research. This thermal stress can significantly impede interpretation of phenotypes by favoring compensatory signaling pathways. Indeed, various studies revealed that thermoneutrality is essential to study metabolism in mice in order to reach a suitable level of "humanization". In this review, we briefly discuss if and how ambient temperature influence blood glucose homeostasis through BAT and muscle-fat crosstalk.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Humans , Animals , Mice , Temperature , Glucose/metabolism , Housing , Diabetes Mellitus, Type 2/metabolism , Reproducibility of Results , Adipose Tissue, Brown/metabolism , Muscle, Skeletal/metabolism , Thermogenesis/genetics , Energy Metabolism/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...