Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 24(4)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30791467

ABSTRACT

Metabolites from a collection of selected fungal isolates have been screened for insecticidal activity against the aphid Acyrthosiphon pisum. Crude organic extracts of culture filtrates from six fungal isolates (Paecilomyces lilacinus, Pochonia chlamydosporia, Penicillium griseofulvum, Beauveria bassiana, Metarhizium anisopliae and Talaromyces pinophilus) caused mortality of aphids within 72 h after treatment. In this work, bioassay-guided fractionation has been used to characterize the main bioactive metabolites accumulated in fungal extracts. Leucinostatins A, B and D represent the bioactive compounds produced by P. lilacinus. From P. griseofulvum and B. bassiana extracts, griseofulvin and beauvericin have been isolated, respectively; 3-O-Methylfunicone and a mixture of destruxins have been found in the active fractions of T. pinophilum and M. anisopliae, respectively. A novel azaphilone compound, we named chlamyphilone, with significant insecticidal activity, has been isolated from the culture filtrate of P. chlamydosporia. Its structure has been determined using extensive spectroscopic methods and chemical derivatization.


Subject(s)
Ascomycota/metabolism , Insecticides/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Insecticides/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
2.
N Biotechnol ; 32(1): 21-5, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-25154034

ABSTRACT

Pentachlorophenol (PCP) is an extremely dangerous pollutant for every ecosystem. In this study we have detected how PCP concentration and pH levels can influence PCP adsorption by Anthracophyllum discolor in the form of live fungal pellets. PCP adsorption was evaluated after 24 hours in KCl 0.1 M electrolyte solution with initial PCP concentrations of 5 and 10 mg L (-1) and with pH values between 4 and 9 (at intervals of 0.5). Fourier Transform Infrared Spectroscopy (FTIR) was used to identify functional groups of fungal biomass that can interact with PCP. The amount of PCP that was adsorbed by A. discolor was >80% at pH values between 5 and 5.5, whatever the concentration tested. PCP adsorption significantly decreased in liquid medium of pH > 6.0. FTIR results showed that amides, alkanes, carboxylates, carboxyl and hydroxyl groups may be important to the PCP adsorption for pellets of A. discolor. Live fungal pellets of A. discolor may be used as a natural biosorbent for liquid solutions contaminated by PCP.


Subject(s)
Agaricales/metabolism , Pentachlorophenol/isolation & purification , Adsorption , Biodegradation, Environmental , Electrolytes/chemistry , Hydrogen-Ion Concentration , Potentiometry , Solutions , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...