Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Molecules ; 29(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38999093

ABSTRACT

Lithium-ion portable batteries (LiPBs) contain valuable elements such as cobalt (Co), nickel (Ni), copper (Cu), lithium (Li) and manganese (Mn), which can be recovered through solid-liquid extraction using choline chloride-based Deep Eutectic Solvents (DESs) and bi-functional ionic liquids (ILs). This study was carried out to investigate the extraction of metals from solid powder, black mass (BM), obtained from LiPBs, with various solvents used: six choline chloride-based DESs in combination with organic acids: lactic acid (1:2, DES 1), malonic acid (1:1, DES 2), succinic acid (1:1, DES 3), glutaric acid (1:1, DES 4) and citric acid (1:1, DES 5 and 2:1, DES 6). Various additives, such as didecyldimethylammonium chloride (DDACl) surfactant, hydrogen peroxide (H2O2), trichloroisocyanuric acid (TCCA), sodium dichloroisocyanurate (NaDCC), pentapotassium bis(peroxymonosulphate) bis(sulphate) (PHM), (glycine + H2O2) or (glutaric acid + H2O2) were used. The best efficiency of metal extraction was obtained with the mixture of {DES 2 + 15 g of glycine + H2O2} in two-stage extraction at pH = 3, T = 333 K, 2 h. In order to obtain better extraction efficiency towards Co, Ni, Li and Mn (100%) and for Cu (75%), the addition of glycine was used. The obtained extraction results using choline chloride-based DESs were compared with those obtained with three bi-functional ILs: didecyldimethylammonium bis(2,4,4-trimethylpentyl) phosphinate, [N10,10,1,1][Cyanex272], didecyldimethylammonium bis(2-ethylhexyl) phosphate, [N10,10,1,1][D2EHPA], and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate, [P6,6,6,14][Cyanex272]/toluene. The results of the extraction of all metal ions with these bi-functional ILs were only at the level of 35-50 wt%. The content of metal ions in aqueous and stripped organic solutions was determined by ICP-OES. In this work, we propose an alternative and highly efficient concept for the extraction of valuable metals from BM of LiPBs using DESs and ILs at low temperatures instead of acid leaching at high temperatures.

2.
Microbiol Spectr ; 12(7): e0425923, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38757975

ABSTRACT

Currently, tuberculosis immunoprophylaxis is based solely on Bacillus Calmette-Guérin (BCG) vaccination, and some of the new potential tuberculosis vaccines are based on the BCG genome. Therefore, it is reasonable to analyze the genomes of individual BCG substrains. The aim of this study was the genetic characterization of the BCG-Moreau Polish (PL) strain used for the production of the BCG vaccine in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. As a result of comparison, BCG-Moreau PL with BCG-Moreau Rio de Janeiro (RDJ) 143 single nucleotide polymorphisms (SNPs) and 32 insertion/deletion mutations (INDELs) were identified. However, the verification of these mutations showed that the most significant were accumulated in the BCG-Moreau RDJ genome. The mutations unique to the Polish strain genome are 1 SNP and 2 INDEL. The strategy of combining short-read sequencing with long-read sequencing is currently the most optimal approach for sequencing bacterial genomes. With this approach, the only available genomic sequence of BCG-Moreau PL was obtained. This sequence will primarily be a reference point in the genetic control of the stability of the vaccine strain in the future. The results enrich knowledge about the microevolution and attenuation of the BCG vaccine substrains. IMPORTANCE: The whole genome sequence obtained is the only genomic sequence of the strain that has been used for vaccine production in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. The comprehensive genomic analysis performed not only enriches knowledge about the microevolution and attenuation of the BCG vaccine substrains but also enables the utilization of identified markers as a reference point in the genetic control and identity tests of the stability of the vaccine strain in the future.


Subject(s)
BCG Vaccine , Genome, Bacterial , Mycobacterium bovis , Polymorphism, Single Nucleotide , Whole Genome Sequencing , BCG Vaccine/genetics , BCG Vaccine/immunology , Mycobacterium bovis/genetics , Mycobacterium bovis/classification , Poland , Humans , Tuberculosis/prevention & control , Tuberculosis/microbiology , INDEL Mutation , Mutation
3.
Int J Mol Sci ; 24(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37511545

ABSTRACT

Microorganisms inhabiting saline environments have been known for decades as producers of many valuable bioproducts. These substances include antimicrobial peptides (AMPs), the most recognizable of which are halocins produced by halophilic Archaea. As agents with a different modes of action from that of most conventionally used antibiotics, usually associated with an increase in the permeability of the cell membrane as a result of a formation of channels and pores, AMPs are a currently promising object of research focused on the investigation of antibiotics with non-standard modes of action. The aim of this study was to investigate antimicrobial activity against multidrug-resistant human pathogens of three peptides, which were synthetised based on sequences identified in metagenomes from saline environments. The investigations were performed against Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli and Candida albicans. Subsequently, the cytotoxicity and haemolytic properties of the tested peptides were verified. An in silico analysis of the interaction of the tested peptides with molecular targets for reference antibiotics was also carried out in order to verify whether or not they can act in a similar way. The P1 peptide manifested the growth inhibition of E. faecalis at a MIC50 of 32 µg/mL and the P3 peptide at a MIC50 of 32 µg/mL was shown to inhibit the growth of both E. faecalis and S. aureus. Furthermore, the P1 and P3 peptides were shown to have no cytotoxic or haemolytic activity against human cells.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Humans , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Peptides , Microbial Sensitivity Tests
4.
J Genomics ; 11: 14-19, 2023.
Article in English | MEDLINE | ID: mdl-37066118

ABSTRACT

Chromohalobacter and Halomonas are genera of bacterial microorganisms belonging to the group of halophiles. They are characterized by high diversity and the ability to produce bioproducts of biotechnological importance, such as ectoine, biosurfactants and carotenoids. Here, we report three draft genomes of Chromohalobacter and two draft genomes of Halomonas isolated from brines. The length of the genomes ranged from 3.6 Mbp to 3.8 Mbp, and GC content was in the 60.11%-66.46% range. None of the analysed genomes has been assigned to any previously known species of the genus Chromohalobacter or Halomonas. Phylogenetic analysis revealed that Chromohalobacter 296-RDG and Chromohalobacter 48-RD10 belonged to the same species, and Chromohalobacter 11-W is more distantly related to the other two analysed strains than to Chromohalobacter canadensis. Halomonas strains 11-S5 and 25-S5 were clustered together and located close to Halomonas ventosae. Functional analysis revealed BGCs related to ectoine production in all genomes analysed. This study increases our overall understanding of halophilic bacteria and is also consistent with the notion that members of this group have significant potential as useful natural product producers.

5.
J Genomics ; 11: 20-25, 2023.
Article in English | MEDLINE | ID: mdl-37066119

ABSTRACT

Halophilic Archaea are a unique group of microorganisms living in saline environments. They constitute a complex group whose biodiversity has not been thoroughly studied. Here, we report three draft genomes of halophilic Archaea isolated from brines, representing the genera of Halorubrum, Halopenitus, and Haloarcula. Two of these strains, Boch-26 and POP-27, were identified as members of the genera Halorubrum and Halopenitus, respectively. However, they could not be assigned to any known species because of the excessive difference in genome sequences between these strains and any other described genomes. In contrast, the third strain, Boch-26, was identified as Haloarcula hispanica. Genome lengths of these isolates ranged from 2.7 Mbp to 3.0 Mbp, and GC content was in the 63.77%-68.77% range. Moreover, functional analysis revealed biosynthetic gene clusters (BGCs) related to terpenes production in all analysed genomes and one BGC for RRE (RiPP recognition element)-dependent RiPP (post-translationally modified peptides) biosynthesis. Moreover, the obtained results enhanced the knowledge about the salt mines microbiota biodiversity as a poorly explored environment so far.

6.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108838

ABSTRACT

Prurigo nodularis (PN) is a chronic condition characterized by the presence of nodular lesions accompanied by intense pruritus. The disease has been linked to several infectious factors, but data on the direct presence of microorganisms in the lesions of PN are scarce. The aim of this study was to evaluate the diversity and composition of the bacterial microbiome in PN lesions by targeting the region V3-V4 of 16S rRNA. Skin swabs were obtained from active nodules in 24 patients with PN, inflammatory patches of 14 patients with atopic dermatitis (AD) and corresponding skin areas of 9 healthy volunteers (HV). After DNA extraction, the V3-V4 region of the bacterial 16S rRNA gene was amplified. Sequencing was performed using the Illumina platform on the MiSeq instrument. Operational taxonomic units (OTU) were identified. The identification of taxa was carried out using the Silva v.138 database. There was no statistically significant difference in the alpha-diversity (intra-sample diversity) between the PN, AD and HV groups. The beta-diversity (inter-sample diversity) showed statistically significant differences between the three groups on a global level and in paired analyses. Staphylococcus was significantly more abundant in samples from PN and AD patients than in controls. The difference was maintained across all taxonomic levels. The PN microbiome is highly similar to that of AD. It remains unclear whether the disturbed composition of the microbiome and the domination of Staphylococcus in PN lesions may be the trigger factor of pruritus and lead to the development of cutaneous changes or is a secondary phenomenon. Our preliminary results support the theory that the composition of the skin microbiome in PN is altered and justify further research on the role of the microbiome in this debilitating condition.


Subject(s)
Dermatitis, Atopic , Microbiota , Prurigo , Humans , RNA, Ribosomal, 16S/genetics , Skin/microbiology , Microbiota/genetics , Dermatitis, Atopic/microbiology , Pruritus , Staphylococcus/genetics
7.
JAMA Pediatr ; 177(4): 345-352, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36848113

ABSTRACT

Importance: Intranasal corticosteroids (INCs) remain the first-line treatment of chronic rhinosinusitis (CRS) in both adults and children, despite the lack of evidence regarding their efficacy in the pediatric population. Similarly, their effect on the sinonasal microbiome has not been well documented. Objective: To assess the clinical, immunological, and microbiological effects of 12 weeks of an INC in young children with CRS. Design, Setting, and Participants: This open-label randomized clinical trial was performed in a pediatric allergy outpatient clinic in 2017 and 2018. Children aged 4 to 8 years with CRS diagnosed by a specialist were included. Data were analyzed from January 2022 to June 2022. Interventions: Patients were randomized to receive intranasal mometasone in an atomizer for 12 weeks (1 application per nostril, once per day) and supplemental 3-mL sodium chloride (NaCl), 0.9%, solution in a nasal nebulizer once a day for 12 weeks (INC group) or 3-mL NaCl, 0.9%, solution in a nasal nebulizer once a day for 12 weeks (control group). Main Outcomes and Measures: Measures taken both before and after treatment included the Sinus and Nasal Quality of Life Survey (SN-5), a nasopharynx swab for microbiome analysis by next-generation sequencing methods, and nasal mucosa sampling for occurrence of innate lymphoid cells (ILCs). Results: Of the 66 children enrolled, 63 completed the study. The mean (SD) age of the cohort was 6.1 (1.3) years; 38 participants (60.3%) were male and 25 (39.7%) were female. The clinical improvement reflected by reduction in SN-5 score was significantly higher in the INC group compared with the control group (INC group score before and after treatment, 3.6 and 3.1, respectively; control group score before and after treatment, 3.4 and 3.8, respectively; mean between-group difference, -0.58; 95% CI, -1.31 to -0.19; P = .009). The INC group had a greater increase in nasopharyngeal microbiome richness and larger decrease in nasal ILC3 abundance compared with the control group. A significant interaction was observed between change in microbiome richness and the INC intervention on the prediction of significant clinical improvement (odds ratio, 1.09; 95% CI, 1.01-1.19; P = .03). Conclusions and Relevance: This randomized clinical trial demonstrated that treatment with an INC improved the quality of life of children with CRS and had a significant effect on increasing sinonasal biodiversity. Although further investigation is needed of the long-term efficacy and safety of INCs, these data may reinforce the recommendation of using INCs as a first-line treatment of CRS in children. Trial Registration: ClinicalTrials.gov Identifier: NCT03011632.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Adult , Child , Male , Humans , Female , Child, Preschool , Quality of Life , Sodium Chloride/therapeutic use , Immunity, Innate , Nasal Polyps/drug therapy , Rhinitis/drug therapy , Lymphocytes , Adrenal Cortex Hormones/therapeutic use , Sinusitis/drug therapy , Chronic Disease , Treatment Outcome
8.
Environ Sci Pollut Res Int ; 30(17): 49551-49566, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36780083

ABSTRACT

The Bochnia Salt Mine is one of the oldest mines in Europe. It was established in the thirteenth century, and actively operated until 1990. The mine has been placed on the UNESCO World Heritage List. Previous research describing Polish salt mines has been focused on bioaerosol characteristics and the identification of microorganisms potentially important for human health. The use of Polish salt mines as inhalation chambers for patients of health resorts has also been investigated. Nevertheless, the biodiversity of salt mines associated with biotechnological potential has not been well characterized. The present study paper examines the biodiversity of microorganisms in the Bochnia Salt Mine based on 16S rRNA gene and shotgun sequencing. Biodiversity studies revealed a significantly higher relative abundance of Chlamydiae at the first level of the mine (3.5%) compared to the other levels (< 0.1%). Patescibacteria microorganisms constituted a high percentage (21.6%) in the sample from site RA6. Shotgun sequencing identified 16 unique metagenome-assembled genomes (MAGs). Although one was identified as Halobacterium bonnevillei, the others have not yet been assigned to any species; it is possible that these species may be undescribed. Preliminary analyses of the biotechnological and pharmaceutical potential of microorganisms inhabiting the mine were also performed, and the biosynthetic gene cluster (BGC) profiles and antimicrobial peptide (AMP) coding genes in individual samples were characterized. Hundreds of BGCs and dozens of AMP coding genes were identified in metagenomes. Our findings indicate that Polish salt mines are promising sites for further research aimed at identifying microorganisms that are producers of potentially important substances with biotechnological and pharmaceutical applications.


Subject(s)
Metagenome , Sodium Chloride , Humans , Poland , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Sodium Chloride, Dietary , Pharmaceutical Preparations , Metagenomics
9.
Materials (Basel) ; 15(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36556543

ABSTRACT

Cu-content La1-xSrxNi1-yCuyO3-δ perovskites with A-site strontium doping have been tuned as cobalt-free cathode materials for high-performance anode-supported SOFCs, working at an intermediate-temperature range. All obtained oxides belong to the R-3c trigonal system, and phase transitions from the R-3c space group to a Pm-3m simple perovskite have been observed by HT-XRD studies. The substitution of lanthanum with strontium lowers the phase transition temperature, while increasing the thermal expansion coefficient (TEC) and oxygen non-stoichiometry δ of the studied materials. The thermal expansion is anisotropic, and TEC values are similar to commonly used solid electrolytes (e.g., 14.1 × 10-6 K-1 for La0.95Sr0.05Ni0.5Cu0.5O3-δ). The oxygen content of investigated compounds has been determined as a function of temperature. All studied materials are chemically compatible with GDC-10 but react with LSGM and 8YSZ electrolytes. The anode-supported SOFC with a La0.95Sr0.05Ni0.5Cu0.5O3-δ cathode presents an excellent power density of 445 mW·cm-2 at 650 °C in humidified H2. The results indicate that La1-xSrxNi1-yCuyO3-δ perovskites with strontium doping at the A-site can be qualified as promising cathode candidates for anode-supported SOFCs, yielding promising electrochemical performance in the intermediate-temperature range.

10.
Membranes (Basel) ; 12(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36295767

ABSTRACT

In this work, magnesium-doped Sr2Fe1.2Mg0.2Mo0.6O6-δ and Sr2Fe0.9Mg0.4Mo0.7O6-δ double perovskites with excellent redox stability have been successfully obtained. The physicochemical properties including: crystal structure properties, redox stability, thermal expansion properties in oxidizing and reducing conditions, oxygen content as a function of temperature and transport properties, as well as the chemical compatibility with typical electrolytes have been systematically investigated. The in situ oxidation of reduced samples using high-temperature XRD studies shows the crystal structure of materials stable at up to a high-temperature range. The in situ reduction and oxidation of sinters with dilatometer measurements prove the excellent redox stability of materials, with the thermal expansion coefficients measured comparable with electrolytes. The oxygen nonstoichiometry δ of compounds was determined and recorded in air and argon up to 900 °C. Sr2Fe1.2Mg0.2Mo0.6O6-δ oxide presents satisfactory values of electrical conductivity in air (56.2 S·cm-1 at 600 °C) and reducing conditions (10.3 S·cm-1 at 800 °C), relatively high coefficients D and k, and good ionic conductivity (cal. 0.005 S·cm-1 at 800 °C). The stability studies show that both compounds are compatible with Ce0.8Gd0.2O1.9 but react with the La0.8Sr0.2Ga0.8Mg0.2O3-d electrolyte. Therefore, the magnesium-doped double perovskites with excellent redox stability can be potentially qualified as electrode materials for symmetrical SOFCs and are of great interest for further investigations.

11.
Molecules ; 27(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956933

ABSTRACT

The extraction of metals from waste printed circuit boards (WPCBs) with ionic liquids (ILs), Deep Eutectic Solvents (DESs) and organophosphorous-based acid (Cyanex 272) has been presented. The study was undertaken to assess the effectiveness of the application of the new leaching liquids, and the new method of extraction of metals from the leachate and the solid phase with or without the leaching process. Solvent extraction from the liquid leachate phase has been studied in detail with popular ILs, such as tetraoctylphosphonium bromide, {[P8,8,8,8][Br] and tributyltetradecylphosphonium chloride, [P4,4,4,14][Cl] using Aqueous Biphasic Systems (ABS) method. Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate, [P6,6,6,14][Cyanex272], ([P6,6,6,14][BTMPP]), trihexyltetradecylphosphonium thiocyanate, [P6,6,6,14][SCN], methyltrioctylammonium chloride (Aliquat 336), as well as bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) were also used in the extraction of metals from the leachate. Two DESs (1) {choline chloride + lactic acid, 1:2} and (2) {choline chloride + malonic acid, 1:1} were used in the extraction of metals from the solid phase. The extraction behavior of metals with DESs was compared with that performed with three new bi-functional ILs: didecyldimethylammonium salicylate, [N10,10,1,1][Sal], didecyldimethylammonium bis(2-ethylhexyl) phosphate, [N10,10,1,1][D2EHPA], and didecyldimethylammonium bis(2,4,4-trimethylpentyl) phosphinate, [N10,10,1,1][Cyanex272]. The [P6,6,6,14][Cyanex272]/toluene and (Cyanex 272 + diethyl phosphite ester) mixtures exhibited a high extraction efficiency of about 50-90% for different metal ions from the leachate. High extraction efficiency of about 90-100 wt% with the ABS method using the mixture {[P8,8,8,8][Br], or [P4,4,4,14][Cl] + NaCl + H2O2 + post-leaching liquid phase} was obtained. The DES 2 revealed the efficiency of copper extraction, ECu = 15.8 wt% and silver, EAg = 20.1 wt% at pH = 5 from the solid phase after the thermal pre-treatment and acid leaching. The solid phase extraction efficiency after thermal pre-treatment only was (ECu = 9.6 wt% and EAg = 14.2 wt%). The use of new bi-functional ILs did not improve the efficiency of the extraction of metal ions from the solid phase. Process factors such as solvent concentration, extraction additives, stripping and leaching methods, temperature, pH and liquid/solid as well as organic/water ratios were under control. For all the systems, the selectivity and distribution ratios were described. The proposed extraction processes can represent alternative paths in new technologies for recovering metals from electronic secondary waste.


Subject(s)
Electronic Waste , Ionic Liquids , Acids , Choline , Electronic Waste/analysis , Hydrogen Peroxide , Ions , Silver , Solvents , Water
13.
Cells ; 10(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34943984

ABSTRACT

Mycobacterium tuberculosis (Mtb) is an intracellular pathogenic bacterium and the causative agent of tuberculosis. This disease is one of the most ancient and deadliest bacterial infections, as it poses major health, social and economic challenges at a global level, primarily in low- and middle-income countries. The lack of an effective vaccine, the long and expensive drug therapy, and the rapid spread of drug-resistant strains of Mtb have led to the re-emergence of tuberculosis as a global pandemic. Here, we assessed the in vitro activity of new imidazole-thiosemicarbazide derivatives (ITDs) against Mtb infection and their effects on mycobacterial biofilm formation. Cytotoxicity studies of the new compounds in cell lines and human monocyte-derived macrophages (MDMs) were performed. The anti-Mtb activity of ITDs was evaluated by determining minimal inhibitory concentrations of resazurin, time-kill curves, bacterial intracellular growth and the effect on biofilm formation. Mutation frequency and whole-genome sequencing of mutants that were resistant to ITDs were performed. The antimycobacterial potential of ITDs with the ability to penetrate Mtb-infected human macrophages and significantly inhibit the intracellular growth of tubercle bacilli and suppress Mtb biofilm formation was observed.


Subject(s)
Imidazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Semicarbazides/pharmacology , Tuberculosis/drug therapy , Antitubercular Agents , Biofilms/drug effects , Cell Line , Humans , Imidazoles/chemistry , Macrophages/drug effects , Macrophages/microbiology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/microbiology , Tuberculosis/pathology
14.
Genes (Basel) ; 12(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34828362

ABSTRACT

Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.


Subject(s)
Archaea/genetics , Bacteria/genetics , Biological Products/analysis , Sequence Analysis, DNA/methods , Archaea/metabolism , Bacteria/metabolism , Computational Biology , Data Mining , Genome, Archaeal , Genome, Bacterial , Salt Tolerance
15.
Pharmacogenomics J ; 21(5): 608-621, 2021 10.
Article in English | MEDLINE | ID: mdl-34302046

ABSTRACT

Methotrexate (MTX) is the first-line therapy for rheumatoid arthritis. Nevertheless, MTX resistance is quite a common issue in clinical practice. There are some premises that aryl hydrocarbon receptor (AhR) gene battery may take part in MTX metabolism. In the present retrospective study, we analyzed genes expression of AHR genes battery associated with MTX metabolism in whole blood of RA patients with good and poor response to MTX treatment. Additionally, sequencing, genotyping and bioinformatics analysis of AHR repressor gene (AHRR) c.565C > G (rs2292596) and c.1933G > C (rs34453673) have been performed. Theoretically, both changes may have an impact on H3K36me3 and H3K27me3. Evolutionary analysis revealed that rs2292596 may be possibly damaging. Allele G in rs2292596 and DAS28 seems to be associated with a higher risk of poor response to MTX treatment in RA. RA patients with poor response to MTX treatment revealed upregulated AhR and SLC19A1 mRNA level. Treatment with IL-6 inhibitor may be helpful to overcome the low-dose MTX resistance. Analysis of gene expression revealed possible another cause of poor response to MTX treatment which is different from that observed in the case of acute lymphoblastic leukemia.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Methotrexate/therapeutic use , Receptors, Aryl Hydrocarbon/genetics , Adult , Aged , Aged, 80 and over , Alleles , Arthritis, Rheumatoid/genetics , Drug Resistance/genetics , Female , Genes/genetics , Genotyping Techniques , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Reduced Folate Carrier Protein/genetics , Treatment Outcome , Young Adult
16.
Genes (Basel) ; 12(4)2021 04 09.
Article in English | MEDLINE | ID: mdl-33918798

ABSTRACT

The mycobacterial nonhomologous end-joining pathway (NHEJ) involved in double-strand break (DSB) repair consists of the multifunctional ATP-dependent ligase LigD and the DNA bridging protein Ku. The other ATP-dependent ligases LigC and AEP-primase PrimC are considered as backup in this process. The engagement of LigD, LigC, and PrimC in the base excision repair (BER) process in mycobacteria has also been postulated. Here, we evaluated the sensitivity of Mycolicibacterium smegmatis mutants defective in the synthesis of Ku, Ku-LigD, and LigC1-LigC2-PrimC, as well as mutants deprived of all these proteins to oxidative and nitrosative stresses, with the most prominent effect observed in mutants defective in the synthesis of Ku protein. Mutants defective in the synthesis of LigD or PrimC/LigC presented a lower frequency of spontaneous mutations than the wild-type strain or the strain defective in the synthesis of Ku protein. As identified by whole-genome sequencing, the most frequent substitutions in all investigated strains were T→G and A→C. Double substitutions, as well as insertions of T or CG, were exclusively identified in the strains carrying functional Ku and LigD proteins. On the other hand, the inactivation of Ku/LigD increased the efficiency of the deletion of G in the mutant strain.


Subject(s)
Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , DNA Primase/metabolism , Ligases/metabolism , Mutation Rate , Mycobacterium/genetics , Oxidative Stress , Bacterial Proteins/genetics , DNA Primase/genetics , Ligases/genetics , Mycobacterium/growth & development , Mycobacterium/metabolism
17.
Pediatr Allergy Immunol ; 32(3): 489-500, 2021 04.
Article in English | MEDLINE | ID: mdl-33222307

ABSTRACT

BACKGROUND: Innate immunity response to local dysbiosis seems to be one of the most important immunologic backgrounds of chronic rhinosinusitis (CRS) and concomitant asthma. We aimed to assess clinical determinants of upper-airway dysbiosis and its effect on nasal inflammatory profile and asthma risk in young children with CRS. METHODS: We recruited one hundred and thirty-three children, aged 4-8 years with doctor-diagnosed CRS with or without asthma. The following procedures were performed in all participants: face-to-face standardized Sinus and Nasal Quality of Life questionnaire, skin prick test, taste perception testing, nasopharynx swab, and sampling of the nasal mucosa. Upper-airway dysbiosis was defined separately by asthma-specific microbiome composition and reduced biodiversity. Multivariate methods were used to define the risk factors for asthma and upper-airway dysbiosis and their specific inflammatory profile of nasal mucosa. RESULTS: The asthma-specific upper-airway microbiome composition reflected by the decreased ratio of Patescibacteria/Actinobacteria independently of atopy increased the risk of asthma (OR:8.32; 95%CI: 2.93-23.6). This asthma-specific microbiome composition was associated with ≥ 7/week sweet consumption (OR:2.64; 95%C:1.11-6.28), reduced biodiversity (OR:3.83; 95%CI:1.65-8.87), the presence of Staphylococcus strains in the nasopharynx (OR:4.25; 95%CI:1.12-16.1), and lower expression of beta-defensin 2, IL-5, and IL-13 in the nasal mucosa. The reduced biodiversity was associated with frequent antibiotic use and with a higher nasal expression of IL-17 and T1R3 (sweet taste receptor). In asthmatic children, reduced sweet taste perception was observed. CONCLUSIONS: Specific upper-airway dysbiosis related to frequent sweet consumption, frequent antibiotic courses, and altered nasal immune function increases the risk of asthma in young children with CRS.


Subject(s)
Asthma , Nasal Polyps , Rhinitis , Sinusitis , Asthma/epidemiology , Child , Child, Preschool , Chronic Disease , Dysbiosis , Humans , Quality of Life , Rhinitis/epidemiology , Sinusitis/epidemiology
18.
Sci Rep ; 10(1): 16415, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33009494

ABSTRACT

Mycobacterium abscessus complex (MABC) is a taxonomic group of rapidly growing, nontuberculous mycobacteria that are found as etiologic agents of various types of infections. They are considered as emerging human pathogens. MABC consists of 3 subspecies-M. abscessus subsp. bolletti, M. abscessus subsp. massiliense and M. abscessus subsp. abscessus. Here we present a novel method for subspecies differentiation of M. abscessus named Subspecies-Specific Sequence Detection (SSSD). This method is based on the presence of signature sequences present within the genomes of each subspecies of MABC. We tested this method against a virtual database of 1505 genome sequences of MABC. Further, we detected signature sequences of MABC in 45 microbiological samples through DNA hybridization. SSSD showed high levels of sensitivity and specificity for differentiation of subspecies of MABC, comparable to those obtained by rpoB sequence typing.


Subject(s)
Mycobacterium abscessus/genetics , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Humans , Mycobacterium Infections, Nontuberculous/microbiology , Sensitivity and Specificity , Sequence Analysis, DNA/methods
19.
Sci Rep ; 9(1): 11794, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31409845

ABSTRACT

Helicobacter pylori plays an essential role in the pathogenesis of gastritis, peptic ulcer disease, and gastric cancer. The serine protease HtrA, an important secreted virulence factor, disrupts the gastric epithelium, which enables H. pylori to transmigrate across the epithelium and inject the oncogenic CagA protein into host cells. The function of periplasmic HtrA for the H. pylori cell is unknown, mainly due to unavailability of the htrA mutants. In fact, htrA has been described as an essential gene in this bacterium. We have screened 100 worldwide H. pylori isolates and show that only in the N6 strain it was possible to delete htrA or mutate the htrA gene to produce proteolytically inactive HtrA. We have sequenced the wild-type and mutant chromosomes and we found that inactivation of htrA is associated with mutations in SecA - a component of the Sec translocon apparatus used to translocate proteins from the cytoplasm into the periplasm. The cooperation of SecA and HtrA has been already suggested in Streptococcus pneumonia, in which these two proteins co-localize. Hence, our results pinpointing a potential functional relationship between HtrA and the Sec translocon in H. pylori possibly indicate for the more general mechanism responsible to maintain bacterial periplasmic homeostasis.


Subject(s)
Bacterial Proteins/genetics , Helicobacter Infections/genetics , Helicobacter pylori/genetics , SecA Proteins/genetics , Serine Proteases/genetics , Antigens, Bacterial/genetics , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Host-Pathogen Interactions/genetics , Humans , Mutation
20.
Pol J Microbiol ; 68(2): 233-246, 2019.
Article in English | MEDLINE | ID: mdl-31250594

ABSTRACT

The aim of this study was to identify the potential vaccine antigens in Corynebacterium diphtheriae strains by in silico analysis of the amino acid variation in the 67-72p surface protein that is involved in the colonization and induction of epithelial cell apoptosis in the early stages of infection. The analysis of pili structural proteins involved in bacterial adherence to host cells and related to various types of infections was also performed. A polymerase chain reaction (PCR) was carried out to amplify the genes encoding the 67-72p protein and three pili structural proteins (SpaC, SpaI, SapD) and the products obtained were sequenced. The nucleotide sequences of the particular genes were translated into amino acid sequences, which were then matched among all the tested strains using bioinformatics tools. In the last step, the affinity of the tested proteins to major histocompatibility complex (MHC) classes I and II, and linear B-cell epitopes was analyzed. The variations in the nucleotide sequence of the 67-72p protein and pili structural proteins among C. diphtheriae strains isolated from various infections were noted. A transposition of the insertion sequence within the gene encoding the SpaC pili structural proteins was also detected. In addition, the bioinformatics analyses enabled the identification of epitopes for B-cells and T-cells in the conserved regions of the proteins, thus, demonstrating that these proteins could be used as antigens in the potential vaccine development. The results identified the most conserved regions in all tested proteins that are exposed on the surface of C. diphtheriae cells.The aim of this study was to identify the potential vaccine antigens in Corynebacterium diphtheriae strains by in silico analysis of the amino acid variation in the 67­72p surface protein that is involved in the colonization and induction of epithelial cell apoptosis in the early stages of infection. The analysis of pili structural proteins involved in bacterial adherence to host cells and related to various types of infections was also performed. A polymerase chain reaction (PCR) was carried out to amplify the genes encoding the 67­72p protein and three pili structural proteins (SpaC, SpaI, SapD) and the products obtained were sequenced. The nucleotide sequences of the particular genes were translated into amino acid sequences, which were then matched among all the tested strains using bioinformatics tools. In the last step, the affinity of the tested proteins to major histocompatibility complex (MHC) classes I and II, and linear B-cell epitopes was analyzed. The variations in the nucleotide sequence of the 67­72p protein and pili structural proteins among C. diphtheriae strains isolated from various infections were noted. A transposition of the insertion sequence within the gene encoding the SpaC pili structural proteins was also detected. In addition, the bioinformatics analyses enabled the identification of epitopes for B-cells and T-cells in the conserved regions of the proteins, thus, demonstrating that these proteins could be used as antigens in the potential vaccine development. The results identified the most conserved regions in all tested proteins that are exposed on the surface of C. diphtheriae cells.


Subject(s)
Adhesins, Bacterial/genetics , Antigens, Bacterial/genetics , Corynebacterium diphtheriae/genetics , Diphtheria Toxoid/genetics , Diphtheria/prevention & control , Genetic Variation , Membrane Proteins/genetics , Adhesins, Bacterial/immunology , Antigens, Bacterial/immunology , Computational Biology , Conserved Sequence , Corynebacterium diphtheriae/immunology , Diphtheria Toxoid/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Membrane Proteins/immunology , Polymerase Chain Reaction , Protein Binding , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL