Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
J Med Chem ; 53(5): 2010-37, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20141147

ABSTRACT

Polymer-assisted solution-phase (PASP) parallel library synthesis was used to discover a piperazinyl glutamate pyridine as a P2Y(12) antagonist. Exploitation of this lead provided compounds with excellent inhibition of platelet aggregation as measured in a human platelet rich plasma (PRP) assay. Pharmacokinetic and physiochemical properties were optimized through modifications at the 4-position of the pyridine ring and the terminal nitrogen of the piperazine ring, leading to compound (4S)-4-[({4-[4-(methoxymethyl)piperidin-1-yl]-6-phenylpyridin-2-yl}carbonyl)amino]-5-oxo-5-{4-[(pentyloxy)carbonyl]piperazin-1-yl}pentanoic acid 47s with good human PRP potency, selectivity, in vivo efficacy, and oral bioavailability. Compound 47s was selected for further preclinical evaluations.


Subject(s)
Piperazines/pharmacokinetics , Platelet Aggregation Inhibitors/pharmacokinetics , Purinergic P2 Receptor Antagonists , Pyridines/pharmacokinetics , Administration, Oral , Adolescent , Adult , Aged , Animals , Biological Availability , CHO Cells , Cricetinae , Cricetulus , Female , Glutamates/chemical synthesis , Glutamates/pharmacokinetics , Humans , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Middle Aged , Piperazines/chemical synthesis , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/chemical synthesis , Pyridines/chemical synthesis , Rats , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y12 , Structure-Activity Relationship , Young Adult
2.
Bioorg Med Chem Lett ; 20(4): 1388-94, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20097563

ABSTRACT

Efforts to refine the SAR of the piperazinyl-glutamate-pyridines for more potent analogs with improved pharmacokinetic profiles are described. Exploring substituted piperidines and other ring systems at the 4-pyridyl position led to compounds with improved potency and pharmacokinetic properties over candidate I. In particular, compounds 4t and 5t were discovered with a 10-fold improvement over potency and improved pharmacokinetic profiles in both the rat and dog.


Subject(s)
Fibrinolytic Agents/pharmacology , Glutamic Acid/chemical synthesis , Piperidines/chemical synthesis , Platelet Aggregation/drug effects , Purinergic P2 Receptor Antagonists , Pyridines/chemical synthesis , Pyridines/pharmacology , Administration, Oral , Animals , CHO Cells , Cricetinae , Cricetulus , Dogs , Fibrinolytic Agents/chemical synthesis , Fibrinolytic Agents/chemistry , Glutamic Acid/chemistry , Glutamic Acid/pharmacology , Humans , Inhibitory Concentration 50 , Molecular Structure , Piperidines/chemistry , Piperidines/pharmacology , Pyridines/chemistry , Rats , Receptors, Purinergic P2Y12 , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 19(21): 6148-56, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19796941

ABSTRACT

Piperazinyl-glutamate-pyrimidines were prepared with oxygen, nitrogen, and sulfur substitution at the 4-position of the pyrimidine leading to highly potent P2Y12 antagonists. In particular, 4-substituted piperidine-4-pyrimidines provided compounds with exceptional potency. Pharmacokinetic and physicochemical properties were fine-tuned through modifications at the 4-position of the piperidine ring leading to compounds with good human PRP potency, selectivity, clearance and oral bioavailability.


Subject(s)
Fibrinolytic Agents/chemistry , Glutamic Acid/chemistry , Piperidines/chemistry , Platelet Aggregation/drug effects , Purinergic P2 Receptor Antagonists , Pyrimidines/chemistry , Animals , Fibrinolytic Agents/chemical synthesis , Fibrinolytic Agents/pharmacokinetics , Humans , Male , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y12 , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 19(16): 4657-63, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19604694

ABSTRACT

Polymer-assisted solution-phase (PASP) parallel library synthesis was used to discover a piperazinyl-glutamate-pyridine as a P2Y(12) antagonist. Exploitation of this lead provided compounds with excellent inhibition of platelet aggregation as measured in a human platelet rich plasma (PRP) assay. Pharmacokinetic and physiochemical properties were optimized leading to compound (4S)-4-[({4-[4-(methoxymethyl)piperidin-1-yl]-6-phenylpyridin-2-yl}carbonyl)amino]-5-oxo-5-{4-[(pentyloxy)carbonyl]piperazin-1-yl}pentanoic acid 22J with good human PRP potency, selectivity, in vivo efficacy and oral bioavailability.


Subject(s)
Glutamic Acid/chemistry , Piperazines/chemistry , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation/drug effects , Purinergic P2 Receptor Antagonists , Pyridines/chemistry , Administration, Oral , Animals , Biological Availability , Humans , Male , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y12 , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Structure-Activity Relationship
6.
J Med Chem ; 46(19): 4043-9, 2003 Sep 11.
Article in English | MEDLINE | ID: mdl-12954057

ABSTRACT

A solution-phase synthesis of an alpha-ketothiazole library of the general form D-Phe-L-AA-Arg-alpha-ketothiazole is described. The five-step synthesis is accomplished using a combination of polymeric reagents and polymer-assisted solution-phase purification concepts, including reactant-sequestering resins, reagent-sequestering resins, and tagged reagents. The multistep synthesis affords desired alpha-ketothiazole products in excellent purities and yields. A variety of L-amino acid inputs were used to probe the S2 pocket of tissue Factor VIIa enzyme to influence both potency and selectivity. An X-ray crystal structure of compound 10k bound to the TF/VIIa complex was obtained that explains the observed selectivity. The alpha-ketothiazoles were found to be potent, reversible-covalent inhibitors of tissue Factor VIIa, with some analogues demonstrating selectivity over thrombin.


Subject(s)
Combinatorial Chemistry Techniques/methods , Factor VIIa/antagonists & inhibitors , Ketones/chemistry , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Thromboplastin/antagonists & inhibitors , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Factor VIIa/genetics , Factor VIIa/metabolism , Humans , Inhibitory Concentration 50 , Models, Molecular , Polymers/chemistry , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/metabolism , Thrombin/antagonists & inhibitors , Thrombin/metabolism , Thromboplastin/genetics , Thromboplastin/metabolism
7.
J Med Chem ; 46(19): 4050-62, 2003 Sep 11.
Article in English | MEDLINE | ID: mdl-12954058

ABSTRACT

Structure-based drug design (SBDD) and polymer-assisted solution-phase (PASP) library synthesis were used to develop a series of pyrazinone inhibitors of the Tissue Factor/Factor VIIa (TF/VIIa) complex. The crystal structure of a tripeptide-alpha-ketothiazole complexed with TF/VIIa was utilized in a docking experiment to identify the pyrazinone core as a starting scaffold. The pyrazinone core could orient the substituents in the correct spatial arrangement to probe the S1, S2, and S3 pockets of the enzyme. A multistep PASP library synthesis was designed to prepare the substituted pyrazinones varying the P1, P2, and P3 moieties. Hundreds of pyrazinone TF/VIIa inhibitors were prepared and tested in several serine protease enzyme assays involved in the coagulation cascade. The inhibitors exhibited modest activity on TF/VIIa with excellent selectivity over thrombin (IIa) and Factor Xa. The structure-activity relationship of the pyrazinone inhibitors will be discussed and X-ray crystal structures of selected compounds complexed with the TF/VIIa enzyme will be described. This study ultimately led to the synthesis of compound 34, which exhibited 16 nM (IC50) activity on TF/VIIa with >6250 x selectivity vs Factor Xa and thrombin. This potent and highly selective inhibitor of TF/VIIa was chosen for preclinical, intravenous proof-of-concept studies to demonstrate the separation between antithrombotic efficacy and bleeding side effects in a nonhuman primate model of electrolytic-induced arterial thrombosis.


Subject(s)
Factor VIIa/antagonists & inhibitors , Fibrinolytic Agents/chemical synthesis , Fibrinolytic Agents/pharmacology , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Thromboplastin/antagonists & inhibitors , Antithrombin III/pharmacology , Binding Sites , Combinatorial Chemistry Techniques/methods , Crystallography, X-Ray , Drug Design , Factor VIIa/chemistry , Factor VIIa/genetics , Fibrinolytic Agents/chemistry , Humans , Inhibitory Concentration 50 , Models, Molecular , Pyrazines/chemistry , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Thrombin/antagonists & inhibitors , Thromboplastin/chemistry
8.
J Pharmacol Exp Ther ; 306(3): 1115-21, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12829728

ABSTRACT

This study was designed to evaluate the antithrombotic efficacy and bleeding propensity of a selective, small-molecule inhibitor of tissue factor/factor VIIa (TF/VIIa) in comparison to small-molecule, selective inhibitors of factor Xa and thrombin in a nonhuman primate model of thrombosis. Acute, spontaneous thrombus formation was induced by electrolytic injury to the intimal surface of a femoral blood vessel, which results in thrombus propagation at the injured site. The TF/FVIIa inhibitor 3-amino-5-[1-[2-([4-[amino(imino)methyl]benzyl]amino)-2-oxoethyl]-3-chloro-5-(isopropylamino)-6-oxo-1,6-dihydropyrazin-2-yl]benzoic acid dihydrochloride (PHA-927F) was fully effective in prevention of thrombosis-induced vessel occlusion at a dose of 400 microg/kg/min, i.v., in the arterial vasculature (femoral artery). Neither the effective dose nor multiples up to 4.4-fold the effective arterial plasma concentration elicited any significant effect on bleeding time or blood loss from either the bleeding time site or the surgical (femoral isolation) site. Small-molecule inhibitors of factor Xa or thrombin were effective arterial antithrombotic agents; however, in contrast to the TF/FVIIa inhibitor, they both elicited substantial increases in bleeding propensity at the effective dose and at multiples of the effective plasma concentration. These data indicate that TF/VIIa inhibition effectively prevented arterial thrombosis with less impact on bleeding parameters than equivalent doses of factor Xa and thrombin inhibitors.


Subject(s)
Aminobenzoates/therapeutic use , Factor VIIa/antagonists & inhibitors , Factor Xa Inhibitors , Fibrinolytic Agents/therapeutic use , Pyrazines/therapeutic use , Thrombosis/drug therapy , Animals , Bleeding Time , Dose-Response Relationship, Drug , Forearm/physiology , Hemodynamics/drug effects , Macaca fascicularis , Male , Prothrombin Time , Sodium Chloride , Thrombin/antagonists & inhibitors , Thromboplastin/antagonists & inhibitors
9.
Bioorg Med Chem Lett ; 13(14): 2319-25, 2003 Jul 21.
Article in English | MEDLINE | ID: mdl-12824026

ABSTRACT

Structure-based drug design coupled with polymer-assisted solution-phase library synthesis was utilized to develop a series of pyrazinone inhibitors of the tissue factor/Factor VIIa complex. The crystal structure of a tri-peptide ketothiazole complexed with TF/VIIa was utilized in a docking experiment that identified a benzyl-substituted pyrazinone as a P(2) surrogate for the tri-peptide. A 5-step PASP library synthesis of these aryl-substituted pyrazinones was developed. The sequence allows for attachment of a variety of P(1) and P(3) moieties, which led to synthesis pyrazinone 23. Compound 23 exhibited 16 nM IC(50) against TF/VIIa with >6250x selectivity versus Factor Xa and thrombin. This potent and highly selective inhibitor of TF/VIIa was chosen for pre-clinical intravenous proof-of-concept studies to demonstrate the separation between antithrombotic efficacy and bleeding side effects in a primate model of thrombosis.


Subject(s)
Factor VIIa/antagonists & inhibitors , Fibrinolytic Agents/chemical synthesis , Fibrinolytic Agents/pharmacology , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Crystallography, X-Ray , Drug Design , Factor Xa Inhibitors , Indicators and Reagents , Models, Molecular , Molecular Conformation , Peptide Library , Prothrombin/antagonists & inhibitors , Structure-Activity Relationship , Thrombin/antagonists & inhibitors , Thrombosis/blood , Thrombosis/chemically induced , Trypsin Inhibitors/chemical synthesis , Trypsin Inhibitors/pharmacology
10.
Bioorg Med Chem Lett ; 13(14): 2363-7, 2003 Jul 21.
Article in English | MEDLINE | ID: mdl-12824035

ABSTRACT

A solution-phase synthesis of an alpha-ketothiazole library of the general form D-Phe-L-AA-L-Arg-alpha-ketothiazole is described. The five-step synthesis is accomplished using a combination of polymeric reagents and polymer-assisted solution-phase purification protocols, including reactant-sequestering resins, reagent-sequestering resins, and tagged reagents. The multi-step synthesis affords the desired alpha-ketothiazole products in excellent purities and yields. A variety of L-amino acid inputs were used to probe the S2 pocket of the tissue factor (TF) VIIa enzyme to influence both potency and selectivity. An X-ray crystal structure of compound 10e bound to the TF/VIIa complex was obtained that explains the observed selectivity. The alpha-ketothiazoles were found to be potent, reversible-covalent inhibitors of tissue factor VIIa, with some analogues demonstrating selectivity versus thrombin.


Subject(s)
Anticoagulants/chemical synthesis , Anticoagulants/pharmacology , Factor VIIa/antagonists & inhibitors , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Crystallography, X-Ray , Factor Xa Inhibitors , Humans , Indicators and Reagents , Models, Molecular , Structure-Activity Relationship , Thrombin/antagonists & inhibitors
11.
Thromb Res ; 112(3): 167-74, 2003.
Article in English | MEDLINE | ID: mdl-14967414

ABSTRACT

INTRODUCTION: Pharmacological treatment of deep vein thrombosis (DVT) in the future may target inhibitors of specific procoagulant proteins. This study used a non-human primate model to test the effect of PHA-798, a specific inhibitor of the tissue factor/Factor VIIa complex (TF/VIIa), on venous thrombus formation. MATERIALS AND METHODS: PHA inhibits the TF/VIIa complex with an IC(50) of 13.5 nM (K(i) 9 nM) and is more than 2000-fold selective for the TF/VIIa complex with respect to IC(50)s for factor Xa and thrombin. In the model, a thrombogenic surface was introduced into the vena cava of a primate, and the amount of thrombus accumulated after 30 min was determined. RESULTS: PHA-798 reduced thrombus formation on the thrombogenic surface in a dose-dependent manner (56+/-1.9% and 85+/-0.3% inhibition with 100 and 200 microg/kg/min PHA-798, respectively) indicating that the model is sensitive to TF/VIIa inhibition. Treatment with 1 mg/kg intravenous (IV) acetyl salicylic acid (ASA) resulted in only a slight (4-12%), non-significant inhibition of thrombus formation. However, the combination of 100 microg/kg/min PHA-798 and 1 mg/kg ASA resulted in an 89% inhibition of thrombus formation. Additionally, while ASA alone increased bleeding time (BT) from 3.3 min at baseline to 4.6 min following treatment, addition of PHA-798 (100 microg/kg/min) to ASA did not significantly increase the BT further (4.7 min). CONCLUSIONS: The results of this study indicate that inhibition of TF/VIIa may be safe and effective for the prevention of the proprogation of venous thrombosis and that the combination of ASA and PHA may provide increased efficacy with little change in safety.


Subject(s)
Factor VIIa/antagonists & inhibitors , Thromboplastin/antagonists & inhibitors , Thrombosis/physiopathology , Animals , Aspirin/toxicity , Bleeding Time , Body Weight , Disease Models, Animal , Macaca fascicularis , Male , Platelet Aggregation Inhibitors/toxicity , Thrombosis/blood , Thrombosis/chemically induced
12.
J Thromb Thrombolysis ; 14(2): 113-21, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12714830

ABSTRACT

The Tissue Factor/Factor VIIa (TF/FVIIa) complex is an attractive target for pharmacological interruption of thrombin generation and hence blood coagulation, as this complex is the initiation point of the extrinsic pathway of coagulation. TF is a cell membrane-associated protein that interacts with soluble FVIIa to activate factors IX and X resulting in a cascade of events that leads to thrombin generation and eventual fibrin deposition. The goal of this non-randomized study was to evaluate XK1, a specific protein inhibitor of TF/FVIIa, and compare antithrombotic efficacy and bleeding propensity to a previously described Factor Xa (FXa) inhibitor (SC-83157/SN429) and a direct-acting thrombin inhibitor (SC-79407/L-374087) in an acute rat model of arterial thrombosis. All saline-treated animals experienced occlusion of the carotid artery due to acute thrombus formation within 20 minutes. Rats treated with XK1 exhibited a dose-dependent inhibition of thrombus formation with full antithrombotic efficacy and no change in bleeding time or total blood loss at a dose of 4.5 mg/kg, i.v. administered over a 60 minute period. FXa inhibition with SC-83157 resulted in complete inhibition of thrombus formation at a dose of 1.2 mg/kg, i.v.; however, this effect was associated with substantial blood loss. Thrombin inhibition with SC-79407 also afforded complete protection from thrombus formation and occlusion at a dose of 2.58 mg/kg, i.v., and like SC-83157, was associated with substantial blood loss. These data imply that TF/FVIIa inhibition confers protection from acute thrombosis without concomitant changes in bleeding, indicating that this target (TF/FVIIa) may provide improved separation of efficacy vs. bleeding side-effects than interruption of coagulation by directly inhibiting either FXa or thrombin.


Subject(s)
Carotid Artery Thrombosis/drug therapy , Disease Models, Animal , Fibrinolytic Agents/therapeutic use , Acute Disease , Animals , Bleeding Time/statistics & numerical data , Blood Coagulation Factors , Carotid Artery Thrombosis/blood , Carotid Artery, Common/physiopathology , Fibrinolytic Agents/blood , Fibrinolytic Agents/chemistry , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL