Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(4): e0284732, 2023.
Article in English | MEDLINE | ID: mdl-37079642

ABSTRACT

In the last decades, illegal logging has posed a serious threat for the integrity of forest ecosystems and for biodiversity conservation in tropical Africa. Although international treaties and regulatory plans have been implemented to reduce illegal logging, much of the total timber volume is harvested and traded illegally from tropical African forest regions. As a result, the development and the application of analytical tools to enhance the traceability and the identification of wood and related products is critical to enforce international regulations. Among available techniques, DNA barcoding is a promising approach for the molecular identification of plant species. However, although it has been used successfully for the discrimination of animal species, no set of genetic markers is available for the universal identification of plant species. In this work, we firstly characterized the genetic diversity of 17 highly-valuable African timber species from five genera (Afzelia, Guibourtia, Leplea, Milicia, Tieghemella) across their distribution ranges in West and Central Africa using the genome skimming approach in order to reconstruct their chloroplast genomes and nuclear ribosomal DNA. Next, we identified single-nucleotide polymorphisms (SNPs) for the discrimination of closely-related species. In this way, we successfully developed and tested novel species-specific genetic barcodes for species identification.


Subject(s)
DNA Barcoding, Taxonomic , Fabaceae , Animals , DNA Barcoding, Taxonomic/methods , Ecosystem , Genomics , Forests , Africa, Central
2.
PhytoKeys ; 206: 137-151, 2022.
Article in English | MEDLINE | ID: mdl-36761267

ABSTRACT

In this data paper, we present a specimen-based occurrence dataset compiled in the framework of the Conservation of Endemic Central African Trees (ECAT) project with the aim of producing global conservation assessments for the IUCN Red List. The project targets all tree species endemic or sub-endemic to the Central African region comprising the Democratic Republic of the Congo (DR Congo), Rwanda, and Burundi. The dataset contains 6361 plant collection records with occurrences of 8910 specimens from 337 taxa belonging to 153 genera in 52 families. Many of these tree taxa have restricted geographic ranges and are only known from a small number of herbarium specimens. As assessments for such taxa can be compromised by inadequate data, we transcribed and geo-referenced specimen label information to obtain a more accurate and complete locality dataset. All specimen data were manually cleaned and verified by botanical experts, resulting in improved data quality and consistency.

3.
PhytoKeys ; (118): 89-103, 2019.
Article in English | MEDLINE | ID: mdl-30881193

ABSTRACT

Based on morphological and phylogenetic evidence, a new genus of Melastomataceae (Melastomateae), Nothodissotis Veranso-Libalah & G.Kadereit, gen. nov., is described from Atlantic Central Africa. Nothodissotis is distinguished from other African Melastomateae genera by its calyx-lobes that are notched at apex and asymmetrical (vs. entire and symmetrical). Nothodissotis includes two species: the type species N.barteri (Hook.f.) Veranso-Libalah & G.Kadereit, comb. nov. (syn. Dissotisbarteri Hook.f.), and the new species N.alenensis Veranso-Libalah & O. Lachenaud, sp. nov., described and illustrated here. Both species are restricted to open vegetation on rock outcrops within the forested region of Atlantic Central Africa. Nothodissotisbarteri has a scattered distribution in Cameroon, Equatorial Guinea, Gabon and Príncipe Island, while N.alenensis is endemic to the Monte Alén massif in Equatorial Guinea, an area where N.barteri does not occur. Nothodissotisalenensis differs from N.barteri by its hypanthium bearing sessile appendages with penicillate hairs (vs. stalked stellate appendages) and its staminal appendages that are much smaller in antepetalous than in antesepalous stamens (vs. subequal in all stamens). The conservation status of both N.barteri and N.alenensis is assessed as Vulnerable in accordance with IUCN criteria.

4.
FEMS Microbiol Ecol ; 81(2): 364-72, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22404179

ABSTRACT

Burkholderia endophytes were identified within the leaves of non-nodulated members of the genus Psychotria. In contrast to leaf-nodulated Psychotria species, which are known to accommodate their endosymbionts into specialized endosymbiont-housing structures, non-nodulated species lack bacterial leaf nodules and harbor endosymbionts intercellularly between mesophyll cells. Based on molecular data (rps16, trnG, and trnLF), the phylogenetic reconstruction of the host plants revealed a separate origin of leaf-nodulated and non-nodulated Psychotria species. Despite a distinct phylogenetic position of the two host clades, the endophytes of the non-nodulated plants were not placed into a single monophyletic group but were found to be closely related to the leaf-nodulated endosymbionts. The observation of genetically similar endophytes in both nodulated and non-nodulated Psychotria lineages suggests that the host plant is playing a crucial role in the induction of leaf nodule formation. Moreover, the concentration of endosymbionts into specialized leaf nodules may be considered as a more derived evolutionary adaptation of the host plant, serving as an interface structure to facilitate metabolic exchange between plant and endosymbiont.


Subject(s)
Burkholderia/genetics , Endophytes/genetics , Phylogeny , Plant Leaves/microbiology , Psychotria/microbiology , Biological Evolution , Burkholderia/classification , Burkholderia/isolation & purification , DNA, Bacterial/genetics , Endophytes/classification , Endophytes/isolation & purification , Sequence Analysis, DNA , Symbiosis
5.
Mol Ecol Resour ; 9(4): 1196-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-21564874

ABSTRACT

Cacopsylla pruni is the vector of European stone fruit yellows, a quarantine disease of Prunus trees. Nine polymorphic microsatellite markers were developed from enriched DNA libraries. Allelic variability was assessed in a collection of 149 females obtained from five localities covering a large geographical area in France. The number of detected alleles ranged from 8 to 37. Within the localities, observed and expected heterozygosities averaged across loci ranged from 0.39 to 0.55, and from 0.68 to 0.81, respectively. A heterozygote deficiency was detected for almost all loci, possibly due to a high null allele frequency. Other possible causes of the homozygote excess (mode of reproduction, inbreeding, assortative mating or Wahlund effect) are discussed. These variable microsatellite loci can provide tools to assess overall genetic variation in this important vector species. They will be used to search for population structure and migration patterns of C. pruni.

SELECTION OF CITATIONS
SEARCH DETAIL
...