Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38691425

ABSTRACT

The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.


Subject(s)
Rhizopus , Symbiosis , Rhizopus/metabolism , Rhizopus/genetics , Spores, Fungal/genetics , Spores, Fungal/metabolism , Spores, Fungal/growth & development , Flavins/metabolism , CRISPR-Cas Systems , Riboflavin/metabolism
2.
Fungal Biol Biotechnol ; 10(1): 17, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37542286

ABSTRACT

BACKGROUND: Non-reducing polyketide synthases (NR-PKSs) account for a major share of natural product diversity produced by both Asco- and Basidiomycota. The present evolutionary diversification into eleven clades further underscores the relevance of these multi-domain enzymes. Following current knowledge, NR-PKSs initiate polyketide assembly by an N-terminal starter unit:acyl transferase (SAT) domain that catalyzes the transfer of an acetyl starter from the acetyl-CoA thioester onto the acyl carrier protein (ACP). RESULTS: A comprehensive phylogenetic analysis of NR-PKSs established a twelfth clade from which three representatives, enzymes CrPKS1-3 of the webcap mushroom Cortinarius rufoolivaceus, were biochemically characterized. These basidiomycete synthases lack a SAT domain yet are fully functional hepta- and octaketide synthases in vivo. Three members of the other clade of basidiomycete NR-PKSs (clade VIII) were produced as SAT-domainless versions and analyzed in vivo and in vitro. They retained full activity, thus corroborating the notion that the SAT domain is dispensable for many basidiomycete NR-PKSs. For comparison, the ascomycete octaketide synthase atrochrysone carboxylic acid synthase (ACAS) was produced as a SAT-domainless enzyme as well, but turned out completely inactive. However, a literature survey revealed that some NR-PKSs of ascomycetes carry mutations within the catalytic motif of the SAT domain. In these cases, the role of the domain and the origin of the formal acetate unit remains open. CONCLUSIONS: The role of SAT domains differs between asco- and basidiomycete NR-PKSs. For the latter, it is not part of the minimal set of NR-PKS domains and not required for function. This knowledge may help engineer compact NR-PKSs for more resource-efficient routes. From the genomic standpoint, seemingly incomplete or corrupted genes encoding SAT-domainless NR-PKSs should not automatically be dismissed as non-functional pseudogenes, but considered during genome analysis to decipher the potential arsenal of natural products of a given fungus.

3.
Angew Chem Int Ed Engl ; 62(42): e202308540, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37650335

ABSTRACT

Rhizonin A and B are hepatotoxic cyclopeptides produced by bacterial endosymbionts (Mycetohabitans endofungorum) of the fungus Rhizopus microsporus. Their toxicity critically depends on the presence of 3-furylalanine (Fua) residues, which also occur in pharmaceutically relevant cyclopeptides of the endolide and bingchamide families. The biosynthesis and incorporation of Fua by non-ribosomal peptide synthetases (NRPS), however, has remained elusive. By genome sequencing and gene inactivation we elucidated the gene cluster responsible for rhizonin biosynthesis. A suite of isotope labeling experiments identified tyrosine and l-DOPA as Fua precursors and provided the first mechanistic insight. Bioinformatics, mutational analysis and heterologous reconstitution identified dioxygenase RhzB as necessary and sufficient for Fua formation. RhzB is a novel type of heme-dependent aromatic oxygenases (HDAO) that enabled the discovery of the bingchamide biosynthesis gene cluster through genome mining.


Subject(s)
Computational Biology , Peptides, Cyclic , Humans , Peptides, Cyclic/chemistry , Multigene Family , Fungi/metabolism , Peptide Synthases/genetics , Peptide Synthases/metabolism
4.
ACS Chem Biol ; 17(11): 3207-3217, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36288793

ABSTRACT

Mycobacteria produce several unusual cofactors that contribute to their metabolic versatility and capability to survive in different environments. Mycofactocin (MFT) is a redox cofactor involved in ethanol metabolism. The redox-active core moiety of mycofactocin is derived from the short precursor peptide MftA, which is modified by several maturases. Recently, it has been shown that the core moiety is decorated by a ß-1,4-glucan chain. Remarkably, the second glucose moiety of the oligosaccharide chain was found to be 2-O-methylated in Mycolicibacterium smegmatis. The biosynthetic gene responsible for this methylation, however, remained elusive, and no methyltransferase gene was part of the MFT biosynthetic gene cluster. Here, we applied reverse genetics to identify the gene product of MSMEG_6237 (mftM) as the SAM-dependent methyltransferase was responsible for methylation of the cofactor in M. smegmatis. According to metabolic analysis and comparative genomics, the occurrence of methylated MFT species was correlated with the presence of mftM homologues in the genomes of mycofactocin producers. This study revealed that the pathogen Mycobacterium tuberculosis does not methylate mycofactocins. Interestingly, mftM homologues co-occur with both mycofactocin biosynthesis genes as well as the putative mycofactocin-dependent alcohol dehydrogenase Mdo. We further showed that mftM knock-out mutants of M. smegmatis suffer from a prolonged lag phase when grown on ethanol as a carbon source. In addition, in vitro digestion of the glucose chain by cellulase suggested a protective function of glucan methylation. These results close an important knowledge gap and provide a basis for future studies into the physiological functions of this unusual cofactor modification.


Subject(s)
Mycobacterium tuberculosis , S-Adenosylmethionine , S-Adenosylmethionine/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Methylation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Oxidation-Reduction , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Ethanol , Glucose
5.
Metab Eng ; 73: 158-167, 2022 09.
Article in English | MEDLINE | ID: mdl-35863619

ABSTRACT

Coenzyme F420 is involved in bioprocesses such as biosynthesis of antibiotics by streptomycetes, prodrug activation in Mycobacterium tuberculosis, and methanogenesis in archaea. F420-dependent enzymes also attract interest as biocatalysts in organic chemistry. However, as only low F420 levels are produced in microorganisms, F420 availability is a serious bottleneck for research and application. Recent advances in our understanding of the F420 biosynthesis enabled heterologous overproduction of F420 in Escherichia coli, but the yields remained moderate. To address this issue, we rationally designed a synthetic operon for F420 biosynthesis in E. coli. However, it still led to the production of low amounts of F420 and undesired side-products. In order to strongly improve yield and purity, a screening approach was chosen to interrogate the gene expression-space of a combinatorial library based on diversified promotors and ribosome binding sites. The whole pathway was encoded by a two-operon construct. The first module ("core") addressed parts of the riboflavin biosynthesis pathway and FO synthase for the conversion of GTP to the stable F420 intermediate FO. The enzymes of the second module ("decoration") were chosen to turn FO into F420. The final construct included variations of T7 promoter strengths and ribosome binding site activity to vary the expression ratio for the eight genes involved in the pathway. Fluorescence-activated cell sorting was used to isolate clones of this library displaying strong F420-derived fluorescence. This approach yielded the highest titer of coenzyme F420 produced in the widely used organism E. coli so far. Production in standard LB medium offers a highly effective and simple production process that will facilitate basic research into unexplored F420-dependent bioprocesses as well as applications of F420-dependent enzymes in biocatalysis.


Subject(s)
Escherichia coli , Riboflavin , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorescence , Gene Expression , Riboflavin/analogs & derivatives , Riboflavin/genetics
6.
mBio ; 13(1): e0350121, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35038903

ABSTRACT

Coenzyme F420 is a microbial redox cofactor that mediates diverse physiological functions and is increasingly used for biocatalytic applications. Recently, diversified biosynthetic routes to F420 and the discovery of a derivative, 3PG-F420, were reported. 3PG-F420 is formed via activation of 3-phospho-d-glycerate (3-PG) by CofC, but the structural basis of substrate binding, its evolution, as well as the role of CofD in substrate selection remained elusive. Here, we present a crystal structure of the 3-PG-activating CofC from Mycetohabitans sp. B3 and define amino acids governing substrate specificity. Site-directed mutagenesis enabled bidirectional switching of specificity and thereby revealed the short evolutionary trajectory to 3PG-F420 formation. Furthermore, CofC stabilized its product, thus confirming the structure of the unstable molecule and revealing its binding mode. The CofD enzyme was shown to significantly contribute to the selection of related intermediates to control the specificity of the combined biosynthetic CofC/D step. These results imply the need to change the design of combined CofC/D activity assays. Taken together, this work presents novel mechanistic and structural insights into 3PG-F420 biosynthesis and evolution and opens perspectives for the discovery and enhanced biotechnological production of coenzyme F420 derivatives in the future. IMPORTANCE The microbial cofactor F420 is crucial for processes like methanogenesis, antibiotics biosynthesis, drug resistance, and biocatalysis. Recently, a novel derivative of F420 (3PG-F420) was discovered, enabling the production and use of F420 in heterologous hosts. By analyzing the crystal structure of a CofC homolog whose substrate choice leads to formation of 3PG-F420, we defined amino acid residues governing the special substrate selectivity. A diagnostic residue enabled reprogramming of the substrate specificity, thus mimicking the evolution of the novel cofactor derivative. Furthermore, a labile reaction product of CofC was revealed that has not been directly detected so far. CofD was shown to provide another layer of specificity of the combined CofC/D reaction, thus controlling the initial substrate choice of CofC. The latter finding resolves a current debate in the literature about the starting point of F420 biosynthesis in various organisms.


Subject(s)
Riboflavin , Riboflavin/metabolism , Oxidation-Reduction , Biocatalysis
7.
ACS Chem Biol ; 16(8): 1482-1492, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34275291

ABSTRACT

Morphotype switches frequently occur in Actinobacteria and are often associated with disparate natural product production. Here, we report on differences in the secondary metabolomes of two morphotypes of a Streptomyces species, including the discovery of a novel antimicrobial glycosylated macrolide, which we named termidomycin A. While exhibiting an unusual 46-member polyene backbone, termidomycin A (1) shares structural features with the clinically important antifungal agents amphotericin B and nystatin A1. Genomic analyses revealed a biosynthetic gene cluster encoding for a putative giant type I polyketide synthase (PKS), whose domain structure allowed us to propose the relative configuration of the 46-member macrolide. The architecture of the biosynthetic gene cluster was different in both morphotypes, thus leading to diversification of the product spectrum. Given the high frequency of genomic rearrangements in Streptomycetes, the metabolic analysis of distinct morphotypes as exemplified in this study is a promising approach for the discovery of bioactive natural products and pathways of diversification.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Macrolides/pharmacology , Streptomyces/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Bacteria/drug effects , Fungi/drug effects , Genomics , Macrolides/chemistry , Macrolides/isolation & purification , Metabolomics , Microbial Sensitivity Tests , Multigene Family , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Streptomyces/genetics , Streptomyces/metabolism
8.
Front Bioeng Biotechnol ; 8: 593781, 2020.
Article in English | MEDLINE | ID: mdl-33344432

ABSTRACT

Mycofactocin (MFT) is a recently discovered glycosylated redox cofactor, which has been associated with the detoxification of antibiotics in pathogenic mycobacteria, and, therefore, of potential medical interest. The MFT biosynthetic gene cluster is commonly found in mycobacteria, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Since the MFT molecule is highly interesting for basic research and could even serve as a potential drug target, large-scale production of the molecule is highly desired. However, conventional shake flask cultivations failed to produce enough MFT for further biochemical characterization like kinetic studies and structure elucidation, and a more comprehensive study of cultivation parameters is urgently needed. Being a redox cofactor, it can be hypothesized that the oxygen transfer rate (OTR) is a critical parameter for MFT formation. Using the non-pathogenic strain Mycobacterium smegmatis mc2 155, shake flask experiments with online measurement of the oxygen uptake and the carbon dioxide formation, were conducted under different levels of oxygen supply. Using liquid chromatography and high-resolution mass spectrometry, a 4-8 times increase of MFT production was identified under oxygen-limited conditions, in both complex and mineral medium. Moreover, the level of oxygen supply modulates not only the overall MFT formation but also the length of the glycosidic chain. Finally, all results were scaled up into a 7 L stirred tank reactor to elucidate the kinetics of MFT formation. Ultimately, this study enables the production of high amounts of these redox cofactors, to perform further investigations into the role and importance of MFTs.

9.
Chem Sci ; 11(20): 5182-5190, 2020 May 28.
Article in English | MEDLINE | ID: mdl-33014324

ABSTRACT

Mycofactocin (MFT) is a redox cofactor belonging to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs) and is involved in alcohol metabolism of mycobacteria including Mycobacterium tuberculosis. A preliminary biosynthetic model had been established by bioinformatics and in vitro studies, while the structure of natural MFT and key biosynthetic steps remained elusive. Here, we report the discovery of glycosylated MFT by 13C-labeling metabolomics and establish a model of its biosynthesis in Mycolicibacterium smegmatis. Extensive structure elucidation including NMR revealed that MFT is decorated with up to nine ß-1,4-linked glucose residues including 2-O-methylglucose. Dissection of biosynthetic genes demonstrated that the oligoglycosylation is catalyzed by the glycosyltransferase MftF. Furthermore, we confirm the redox cofactor function of glycosylated MFTs by activity-based metabolic profiling using the carveol dehydrogenase LimC and show that the MFT pool expands during cultivation on ethanol. Our results will guide future studies into the biochemical functions and physiological roles of MFT in bacteria.

10.
Appl Environ Microbiol ; 86(12)2020 06 02.
Article in English | MEDLINE | ID: mdl-32276981

ABSTRACT

Coenzyme F420 is a redox cofactor involved in hydride transfer reactions in archaea and bacteria. Since F420-dependent enzymes are attracting increasing interest as tools in biocatalysis, F420 biosynthesis is being revisited. While it was commonly accepted for a long time that the 2-phospho-l-lactate (2-PL) moiety of F420 is formed from free 2-PL, it was recently shown that phosphoenolpyruvate is incorporated in Actinobacteria and that the C-terminal domain of the FbiB protein, a member of the nitroreductase (NTR) superfamily, converts dehydro-F420 into saturated F420 Outside the Actinobacteria, however, the situation is still unclear because FbiB is missing in these organisms and enzymes of the NTR family are highly diversified. Here, we show by heterologous expression and in vitro assays that stand-alone NTR enzymes from Thermomicrobia exhibit dehydro-F420 reductase activity. Metabolome analysis and proteomics studies confirmed the proposed biosynthetic pathway in Thermomicrobium roseum These results clarify the biosynthetic route of coenzyme F420 in a class of Gram-negative bacteria, redefine functional subgroups of the NTR superfamily, and offer an alternative for large-scale production of F420 in Escherichia coli in the future.IMPORTANCE Coenzyme F420 is a redox cofactor of Archaea and Actinobacteria, as well as some Gram-negative bacteria. Its involvement in processes such as the biosynthesis of antibiotics, the degradation of xenobiotics, and asymmetric enzymatic reductions renders F420 of great relevance for biotechnology. Recently, a new biosynthetic step during the formation of F420 in Actinobacteria was discovered, involving an enzyme domain belonging to the versatile nitroreductase (NTR) superfamily, while this process remained blurred in Gram-negative bacteria. Here, we show that a similar biosynthetic route exists in Thermomicrobia, although key biosynthetic enzymes show different domain architectures and are only distantly related. Our results shed light on the biosynthesis of F420 in Gram-negative bacteria and refine the knowledge about sequence-function relationships within the NTR superfamily of enzymes. Appreciably, these results offer an alternative route to produce F420 in Gram-negative model organisms and unveil yet another biochemical facet of this pathway to be explored by synthetic microbiologists.


Subject(s)
Chloroflexi/metabolism , Nitroreductases/metabolism , Riboflavin/analogs & derivatives , Biosynthetic Pathways , Chloroflexi/enzymology , Oxidation-Reduction , Riboflavin/biosynthesis
11.
Angew Chem Int Ed Engl ; 59(4): 1450-1454, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31725937

ABSTRACT

Upon injury, psychotropic psilocybin-producing mushrooms instantly develop an intense blue color, the chemical basis and mode of formation of which has remained elusive. We report two enzymes from Psilocybe cubensis that carry out a two-step cascade to prepare psilocybin for oxidative oligomerization that leads to blue products. The phosphatase PsiP removes the 4-O-phosphate group to yield psilocin, while PsiL oxidizes its 4-hydroxy group. The PsiL reaction was monitored by in situ 13 C NMR spectroscopy, which indicated that oxidative coupling of psilocyl residues occurs primarily via C-5. MS and IR spectroscopy indicated the formation of a heterogeneous mixture of preferentially psilocyl 3- to 13-mers and suggest multiple oligomerization routes, depending on oxidative power and substrate concentration. The results also imply that phosphate ester of psilocybin serves a reversible protective function.


Subject(s)
Agaricales/chemistry , Biological Products/chemistry , Hallucinogens/adverse effects , Psilocybe/enzymology
12.
ACS Chem Biol ; 14(9): 2088-2094, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31469543

ABSTRACT

Coenzyme F420 is a specialized redox cofactor with a negative redox potential. It supports biochemical processes like methanogenesis, degradation of xenobiotics, and the biosynthesis of antibiotics. Although well-studied in methanogenic archaea and actinobacteria, not much is known about F420 in Gram-negative bacteria. Genome sequencing revealed F420 biosynthetic genes in the Gram-negative, endofungal bacterium Paraburkholderia rhizoxinica, a symbiont of phytopathogenic fungi. Fluorescence microscopy, high-resolution LC-MS, and structure elucidation by NMR demonstrated that the encoded pathway is active and yields unexpected derivatives of F420 (3PG-F420). Further analyses of a biogas-producing microbial community showed that these derivatives are more widespread in nature. Genetic and biochemical studies of their biosynthesis established that a specificity switch in the guanylyltransferase CofC reprogrammed the pathway to start from 3-phospho-d-glycerate, suggesting a rerouting event during the evolution of F420 biosynthesis. Furthermore, the cofactor activity of 3PG-F420 was validated, thus opening up perspectives for its use in biocatalysis. The 3PG-F420 biosynthetic gene cluster is fully functional in Escherichia coli, enabling convenient production of the cofactor by fermentation.


Subject(s)
Burkholderiaceae/metabolism , Glyceric Acids/metabolism , Riboflavin/analogs & derivatives , Glyceric Acids/chemistry , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Riboflavin/biosynthesis , Riboflavin/chemistry , Substrate Specificity
13.
Mol Microbiol ; 112(2): 605-619, 2019 08.
Article in English | MEDLINE | ID: mdl-31087720

ABSTRACT

Fungi defend their ecological niche against antagonists by producing antibiosis molecules. Some of these molecules are only produced upon confrontation with the antagonist. The basidiomycete Coprinopsis cinerea induces the expression of the sesquiterpene synthase-encoding gene cop6 and its two neighboring genes coding for cytochrome P450 monooxygenases in response to bacteria. We further investigated this regulation of cop6 and examined if the gene product is involved in the production of antibacterials. Cell-free supernatants of axenic cultures of the Gram-positive bacterium Bacillus subtilis were sufficient to induce cop6 transcription assessed using a fluorescent reporter strain. Use of this strain in a microfluidic device revealed that the cop6 gene was induced in all hyphae directly exposed to the supernatant and that induction occurred within less than one hour. Targeted replacement of the cop6 gene demonstrated the requirement of the encoded synthase for the biosynthesis of the sesquiterpene lagopodin B, a previously reported antibacterial compound from related species. Accordingly, lagopodin B from C. cinerea inhibited the growth of several Gram-positive bacteria including B. subtilis but not Gram-negative bacteria. Our results demonstrate that the C. cinerea vegetative mycelium responds to soluble compounds of a bacterial culture supernatant by local production of an antibacterial secondary metabolite.


Subject(s)
Agaricales/metabolism , Anti-Bacterial Agents/metabolism , Bacillus subtilis/physiology , Sesquiterpenes/metabolism , Agaricales/enzymology , Agaricales/genetics , Anti-Bacterial Agents/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Sesquiterpenes/pharmacology
14.
Chem Sci ; 10(48): 10979-10990, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-32953002

ABSTRACT

Modular biosynthetic machineries such as polyketide synthases (PKSs) or nonribosomal peptide synthetases (NRPSs) give rise to a vast structural diversity of bioactive metabolites indispensable in the treatment of cancer or infectious diseases. Here, we provide evidence for different evolutionary processes leading to the diversification of modular NRPSs and thus, their respective products. Discovery of a novel lipo-octapeptide family from Pseudomonas, the virginiafactins, and detailed structure elucidation of closely related peptides, the cichofactins and syringafactins, allowed retracing recombinational diversification of the respective NRPS genes. Bioinformatics analyses allowed us to spot an evolutionary snapshot of these processes, where recombination occurred both within the same and between different biosynthetic gene clusters. Our systems feature a recent diversification process, which may represent a typical paradigm to variations in modular biosynthetic machineries.

15.
Chembiochem ; 19(21): 2307-2311, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30160345

ABSTRACT

Cyclic peptides containing non-proteinogenic amino acids often exhibit a broad bioactivity spectrum and many have entered clinical trials with good prospects for drug development. We recently reported the discovery of six cyclic tetrapeptides, pseudoxylallemycins A-F (1-6), from a termite-associated Pseudoxylaria sp. X802. These compounds contain a rare O-homoallenyl-l-tyrosine moiety and show promising antimicrobial activity against the Gram-negative pathogenic bacterium Pseudomonas aeruginosa. To perform more detailed structure-activity studies, we pursued a precursor-directed diversification strategy. Herein, we report the purification, identification, and testing of 21 new pseudoxylallemycin derivatives.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Ascomycota/chemistry , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Pseudomonas aeruginosa/drug effects , Animals , Isoptera/microbiology , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Structure-Activity Relationship
16.
Cell Chem Biol ; 25(6): 659-665.e9, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29606578

ABSTRACT

Chemical and biochemical analyses of one of the most basic nonribosomal peptide synthetases (NRPS) from a Pseudomonas fluorescens strain revealed its striking plasticity. Determination of the potential substrate scope enabled us to anticipate novel secondary metabolites that could subsequently be isolated and tested for their bioactivities. Detailed analyses of the monomodular pyreudione synthetase showed that the biosynthesis of the bacterial pyreudione alkaloids does not require additional biosynthetic enzymes. Heterologous expression of a similar and functional, yet cryptic, NRPS of Pseudomonas entomophila was successful and allowed us to perform a phylogenetic analysis of their thioesterase domains.


Subject(s)
Alkaloids/biosynthesis , Escherichia coli/metabolism , Peptide Synthases/metabolism , Pseudomonas/metabolism , Alkaloids/chemistry , Dictyostelium/chemistry , Dictyostelium/metabolism , Escherichia coli/chemistry , Molecular Structure , Pseudomonas/chemistry
17.
Fungal Genet Biol ; 112: 55-63, 2018 03.
Article in English | MEDLINE | ID: mdl-27457378

ABSTRACT

Among the invaluable benefits of basidiomycete genomics is the dramatically enhanced insight into the potential capacity to biosynthesize natural products. This study focuses on adenylate-forming reductases, which is a group of natural product biosynthesis enzymes that resembles non-ribosomal peptide synthetases, yet serves to modify one substrate, rather than to condense two or more building blocks. Phylogenetically, these reductases fall in four classes. The phylogeny of Heterobasidion annosum (Russulales) and Serpula lacrymans (Boletales) adenylate-forming reductases was investigated. We identified a previously unrecognized phylogenetic branch within class III adenylate-forming reductases. Three representatives were heterologously produced and their substrate preferences determined in vitro: NPS9 and NPS11 of S. lacrymans preferred l-threonine and benzoic acid, respectively, while NPS10 of H. annosum accepted phenylpyruvic acid best. We also investigated two class IV adenylate-forming reductases of Coprinopsis cinerea, which each were active with l-alanine, l-valine, and l-serine as substrates. Our results show that adenylate-forming reductases are functionally more diverse than previously recognized. As none of the natural products known from the species investigated in this study includes the identified substrates of their respective reductases, our findings may help further explore the diversity of these basidiomycete secondary metabolomes.


Subject(s)
Agaricales/enzymology , Genetic Variation , Genome, Fungal , Oxidoreductases/classification , Oxidoreductases/genetics , Phylogeny , Agaricales/genetics , Oxidoreductases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Substrate Specificity
18.
Appl Environ Microbiol ; 83(21)2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28842536

ABSTRACT

The model white-rot basidiomycete, Ceriporiopsis (Gelatoporia) subvermispora B, encodes putative natural product biosynthesis genes. Among them is the gene for the seven-domain nonribosomal peptide synthetase CsNPS2. It is a member of the as-yet-uncharacterized fungal type VI siderophore synthetase family, which is highly conserved and widely distributed among the basidiomycetes. These enzymes include only one adenylation (A) domain, i.e., one complete peptide synthetase module, and two thiolation/condensation (T-C) didomain partial modules which together constitute an AT1C1T2C2T3C3 domain setup. The full-length CsNPS2 enzyme (274.5 kDa) was heterologously produced as a polyhistidine fusion in Aspergillus niger as a soluble and active protein. N 5-acetyl-N 5-hydroxy-l-ornithine (l-AHO) and N 5-cis-anhydromevalonyl-N 5 -hydroxy-l-ornithine (l-AMHO) were accepted as the substrates, based on results of an in vitro substrate-dependent [32P]ATP-pyrophosphate radioisotope exchange assay. Full-length holo-CsNPS2 catalyzed amide bond formation between three l-AHO molecules to release the linear l-AHO trimer, called basidioferrin, as the product in vitro, which was verified by liquid chromatography-high-resolution electrospray ionization-mass spectrometry analysis. Phylogenetic analyses suggested that type VI family siderophore synthetases are widespread in mushrooms and evolved in a common ancestor of basidiomycetes.IMPORTANCE The basidiomycete nonribosomal peptide synthetase CsNPS2 represents a member of a widely distributed but previously uninvestigated class (type VI) of fungal siderophore synthetases. Genes orthologous to CsNPS2 are highly conserved across various phylogenetic clades of the basidiomycetes. Hence, our work serves as a broadly applicable model for siderophore biosynthesis and iron metabolism in higher fungi. Also, our results on the amino acid substrate preference of CsNPS2 support a further understanding of the substrate selectivity of fungal adenylation domains. Methodologically, this report highlights the Aspergillus niger/SM-Xpress-based system as a suitable platform to heterologously express multimodular basidiomycete biosynthesis enzymes in the >250-kDa range in soluble and active form.

19.
Proc Natl Acad Sci U S A ; 114(3): E347-E356, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28049838

ABSTRACT

The as-yet uncultured filamentous bacteria "Candidatus Entotheonella factor" and "Candidatus Entotheonella gemina" live associated with the marine sponge Theonella swinhoei Y, the source of numerous unusual bioactive natural products. Belonging to the proposed candidate phylum "Tectomicrobia," Candidatus Entotheonella members are only distantly related to any cultivated organism. The Ca E. factor has been identified as the source of almost all polyketide and modified peptides families reported from the sponge host, and both Ca Entotheonella phylotypes contain numerous additional genes for as-yet unknown metabolites. Here, we provide insights into the biology of these remarkable bacteria using genomic, (meta)proteomic, and chemical methods. The data suggest a metabolic model of Ca Entotheonella as facultative anaerobic, organotrophic organisms with the ability to use methanol as an energy source. The symbionts appear to be auxotrophic for some vitamins, but have the potential to produce most amino acids as well as rare cofactors like coenzyme F420 The latter likely accounts for the strong autofluorescence of Ca Entotheonella filaments. A large expansion of protein families involved in regulation and conversion of organic molecules indicates roles in host-bacterial interaction. In addition, a massive overrepresentation of members of the luciferase-like monooxygenase superfamily points toward an important role of these proteins in Ca Entotheonella. Furthermore, we performed mass spectrometric imaging combined with fluorescence in situ hybridization to localize Ca Entotheonella and some of the bioactive natural products in the sponge tissue. These metabolic insights into a new candidate phylum offer hints on the targeted cultivation of the chemically most prolific microorganisms known from microbial dark matter.


Subject(s)
Aquatic Organisms/metabolism , Aquatic Organisms/microbiology , Bacteria/metabolism , Biological Products/metabolism , Porifera/metabolism , Porifera/microbiology , Amino Acids/metabolism , Animals , Host-Pathogen Interactions/physiology , Phylogeny , Polyketide Synthases/metabolism , Proteomics/methods , Riboflavin/analogs & derivatives , Riboflavin/metabolism , Symbiosis/physiology
20.
Cell Chem Biol ; 24(1): 1-2, 2017 Jan 19.
Article in English | MEDLINE | ID: mdl-28107651

ABSTRACT

In this issue of Cell Chemical Biology, Li et al. (2017) report on the biosynthesis of the monobactam sulfazecin by Pseudomonas acidophila and hypothesize a novel mechanism of ß-lactam ring formation. As monobactam antibiotics are unaffected by some emerging resistance mechanisms (particularly metallo-ß-lactamases), this discovery opens prospects to engineer ß-lactam antibiotics against multi-drug resistant pathogens.


Subject(s)
Drug Resistance, Multiple, Bacterial/drug effects , Monobactams/pharmacology , Pseudomonas/metabolism , Molecular Structure , Monobactams/biosynthesis , Monobactams/chemistry , beta-Lactams/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...