Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Ground Water ; 56(2): 317-336, 2018 03.
Article in English | MEDLINE | ID: mdl-28873499

ABSTRACT

A mass balance is formulated to evaluate the mobilization of chlorinated ethene compounds (CE) from the rock matrix of a fractured mudstone aquifer under pre- and postbioremediation conditions. The analysis relies on a sparse number of monitoring locations and is constrained by a detailed description of the groundwater flow regime. Groundwater flow modeling developed under the site characterization identified groundwater fluxes to formulate the CE mass balance in the rock volume exposed to the injected remediation amendments. Differences in the CE fluxes into and out of the rock volume identify the total CE mobilized from diffusion, desorption, and nonaqueous phase liquid dissolution under pre- and postinjection conditions. The initial CE mass in the rock matrix prior to remediation is estimated using analyses of CE in rock core. The CE mass mobilized per year under preinjection conditions is small relative to the total CE mass in the rock, indicating that current pump-and-treat and natural attenuation conditions are likely to require hundreds of years to achieve groundwater concentrations that meet regulatory guidelines. The postinjection CE mobilization rate increased by approximately an order of magnitude over the 5 years of monitoring after the amendment injection. This rate is likely to decrease and additional remediation applications over several decades would still be needed to reduce CE mass in the rock matrix to levels where groundwater concentrations in fractures achieve regulatory standards.


Subject(s)
Biodegradation, Environmental , Groundwater , Water Pollutants, Chemical , Diffusion
2.
Ground Water ; 56(2): 300-316, 2018 03.
Article in English | MEDLINE | ID: mdl-28873502

ABSTRACT

Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower-permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture-dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high- and low-permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured-rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.


Subject(s)
Biodegradation, Environmental , Groundwater/chemistry , Trichloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Water Wells
3.
Ground Water ; 54(2): 186-201, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26172032

ABSTRACT

Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.


Subject(s)
Electric Impedance , Environmental Monitoring/methods , Groundwater/analysis , Tomography/methods , Water Pollutants, Chemical/analysis , Environmental Monitoring/instrumentation , Tomography/instrumentation , Trichloroethylene/analysis , Water Movements
4.
Chemosphere ; 119: 744-749, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25192648

ABSTRACT

Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices.


Subject(s)
Geologic Sediments/analysis , Groundwater/analysis , Trichloroethylene/chemistry , Environmental Monitoring
5.
J Contam Hydrol ; 171: 1-11, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25461882

ABSTRACT

Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently dipping mudstones. Despite more than 18 years of pump and treat (P&T) remediation, and natural attenuation processes, CVOC concentrations in aqueous samples pumped from these deeper strata remain elevated in isolated intervals. DNAPL was detected in one borehole during coring at a depth of 27 m. In contrast to core samples from the weathered zone, concentrations in core samples from deeper unweathered and unfractured strata are typically below detection. However, high CVOC concentrations were found in isolated samples from fissile black carbon-rich strata and fractured gray laminated strata. Aqueous-phase concentrations were correspondingly high in samples pumped from these strata via short-interval wells or packer-isolated zones in long boreholes. A refined conceptual site model considers that prior to P&T remediation groundwater flow was primarily subhorizontal in the higher-permeability near surface strata, and the bulk of contaminant mass was shallow. CVOCs diffused into these fractured and weathered mudstones. DNAPL and high concentrations of CVOCs migrated slowly down in deeper unweathered strata, primarily along isolated dipping bedding-plane fractures. After P&T began in 1995, using wells open to both shallow and deep strata, downward transport of dissolved CVOCs accelerated. Diffusion of TCE and other CVOCs from deeper fractures penetrated only a few centimeters into the unweathered rock matrix, likely due to sorption of CVOCs on rock organic carbon. Remediation in the deep, unweathered strata may benefit from the relatively limited migration of CVOCs into the rock matrix. Synthesis of rock core sampling from closely spaced boreholes with geophysical logging and hydraulic testing improves understanding of the controls on CVOC delineation and informs remediation design and monitoring.


Subject(s)
Geologic Sediments/analysis , Groundwater/analysis , Volatile Organic Compounds/analysis , Water Pollutants, Chemical/analysis , Water Quality , Models, Theoretical , New Jersey , Time Factors , Water Wells/analysis
6.
J Contam Hydrol ; 156: 62-77, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24270158

ABSTRACT

An in situ bioaugmentation (BA) experiment was conducted to understand processes controlling microbial dechlorination of trichloroethene (TCE) in groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. In the BA experiment, an electron donor (emulsified vegetable oil and sodium lactate) and a chloro-respiring microbial consortium were injected into a well in fractured mudstone of Triassic age. Water enriched in ²H was also injected as a tracer of the BA solution, to monitor advective transport processes. The changes in concentration and the δ¹³C of TCE, cis-dichloroethene (cis-DCE), and vinyl chloride (VC); the δ²H of water; changes in the abundance of the microbial communities; and the concentration of dissolved H2 gas compared to pre- test conditions, provided multiple lines of evidence that enhanced biodegradation occurred in the injection well and in two downgradient wells. For those wells where the biodegradation was stimulated intensively, the sum of the molar chlorinated ethene (CE) concentrations in post-BA water was higher than that of the sum of the pre-BA background molar CE concentrations. The concentration ratios of TCE/(cis-DCE+VC) indicated that the increase in molar CE concentration may result from additional TCE mobilized from the rock matrix in response to the oil injection or due to desorption/diffusion. The stable carbon isotope mass-balance calculations show that the weighted average ¹³C isotope of the CEs was enriched for around a year compared to the background value in a two year monitoring period, an effective indication that dechlorination of VC was occurring. Insights gained from this study can be applied to efforts to use BA in other fractured rock systems. The study demonstrates that a BA approach can substantially enhance in situ bioremediation not only in fractures connected to the injection well, but also in the rock matrix around the well due to processes such as diffusion and desorption. Because the effect of the BA was intensive only in wells where an amendment was distributed during injection, it is necessary to adequately distribute the amendments throughout the fractured rock to achieve substantial bioremediation. The slowdown in BA effect after a year is due to some extend to the decrease abundant of appropriate microbes, but more likely the decreased concentration of electron donor.


Subject(s)
Environmental Pollutants/metabolism , Trichloroethylene/metabolism , Biodegradation, Environmental , Biomass , Carbon Isotopes , Deuterium/analysis , Environmental Pollutants/analysis , Environmental Pollutants/chemistry , Groundwater/chemistry , Groundwater/microbiology , New Jersey , Trichloroethylene/analysis , Trichloroethylene/chemistry
7.
J Cereb Blood Flow Metab ; 33(1): 137-45, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23047273

ABSTRACT

The aim of the study was to better understand blood-flow changes in large arteries and microvessels during the first 15 minutes of reflow in a P7 rat model of arterial occlusion. Blood-flow changes were monitored by using ultrasound imaging with sequential Doppler recordings in internal carotid arteries (ICAs) and basilar trunk. Relative cerebral blood flow (rCBF) changes were obtained by using laser speckle Doppler monitoring. Tissue perfusion was measured with [(14)C]-iodoantipyrine autoradiography. Cerebral energy metabolism was evaluated by mitochondrial oxygen consumption. Gradual increase in mean blood-flow velocities illustrated a gradual perfusion during early reflow in both ICAs. On ischemia, the middle cerebral artery (MCA) territory presented a residual perfusion, whereas the caudal territory remained normally perfused. On reflow, speckle images showed a caudorostral propagation of reperfusion through anastomotic connections, and a reduced perfusion in the MCA territory. Autoradiography highlighted the caudorostral gradient, and persistent perfusion in ventral and medial regions. These blood-flow changes were accompanied by mitochondrial respiration impairment in the ipsilateral cortex. Collectively, these data indicate the presence of a primary collateral pathway through the circle of Willis, providing an immediate diversion of blood flow toward ischemic regions, and secondary efficient cortical anastomoses in the immature rat brain.


Subject(s)
Carotid Artery, Internal/physiopathology , Cerebrovascular Circulation/physiology , Microvessels/physiopathology , Middle Cerebral Artery/physiopathology , Reperfusion Injury/physiopathology , Stroke/physiopathology , Animals , Animals, Newborn , Autoradiography , Blood Flow Velocity/physiology , Carotid Artery, Internal/diagnostic imaging , Carotid Artery, Internal/growth & development , Disease Models, Animal , Laser-Doppler Flowmetry , Magnetic Resonance Imaging , Microvessels/diagnostic imaging , Microvessels/growth & development , Middle Cerebral Artery/diagnostic imaging , Middle Cerebral Artery/growth & development , Mitochondria/metabolism , Oxygen Consumption/physiology , Radiography , Rats , Rats, Wistar , Reperfusion Injury/diagnostic imaging , Reperfusion Injury/metabolism , Spatio-Temporal Analysis , Stroke/diagnostic imaging , Stroke/metabolism , Ultrasonography
8.
J Clin Invest ; 120(2): 433-45, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20071773

ABSTRACT

Cerebral ischemic small vessel disease (SVD) is the leading cause of vascular dementia and a major contributor to stroke in humans. Dominant mutations in NOTCH3 cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic archetype of cerebral ischemic SVD. Progress toward understanding the pathogenesis of this disease and developing effective therapies has been hampered by the lack of a good animal model. Here, we report the development of a mouse model for CADASIL via the introduction of a CADASIL-causing Notch3 point mutation into a large P1-derived artificial chromosome (PAC). In vivo expression of the mutated PAC transgene in the mouse reproduced the endogenous Notch3 expression pattern and main pathological features of CADASIL, including Notch3 extracellular domain aggregates and granular osmiophilic material (GOM) deposits in brain vessels, progressive white matter damage, and reduced cerebral blood flow. Mutant mice displayed attenuated myogenic responses and reduced caliber of brain arteries as well as impaired cerebrovascular autoregulation and functional hyperemia. Further, we identified a substantial reduction of white matter capillary density. These neuropathological changes occurred in the absence of either histologically detectable alterations in cerebral artery structure or blood-brain barrier breakdown. These studies provide in vivo evidence for cerebrovascular dysfunction and microcirculatory failure as key contributors to hypoperfusion and white matter damage in this genetic model of ischemic SVD.


Subject(s)
Brain Ischemia/genetics , Cerebrovascular Circulation/genetics , Animals , Blood Vessels/pathology , Blood-Brain Barrier , Brain Ischemia/pathology , CADASIL/genetics , CADASIL/pathology , Cerebral Arteries/pathology , Chromosomes, Artificial/genetics , Disease Models, Animal , Disease Progression , Homeostasis , Humans , Mice , Mice, Transgenic , Receptor, Notch3 , Receptors, Notch/genetics
9.
Ground Water ; 48(3): 401-15, 2010.
Article in English | MEDLINE | ID: mdl-20002208

ABSTRACT

A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.


Subject(s)
Water Movements , Water Supply , Environmental Monitoring
10.
Ground Water ; 47(1): 108-21, 2009.
Article in English | MEDLINE | ID: mdl-18793203

ABSTRACT

The bioavailability of total organic carbon (TOC) was examined in ground water from two hydrologically distinct aquifers using biochemical indicators widely employed in chemical oceanography. Concentrations of total hydrolyzable neutral sugars (THNS), total hydrolyzable amino acids (THAA), and carbon-normalized percentages of TOC present as THNS and THAA (referred to as "yields") were assessed as indicators of bioavailability. A shallow coastal plain aquifer in Kings Bay, Georgia, was characterized by relatively high concentrations (425 to 1492 microM; 5.1 to 17.9 mg/L) of TOC but relatively low THNS and THAA yields (approximately 0.2%-1.0%). These low yields are consistent with the highly biodegraded nature of TOC mobilized from relatively ancient (Pleistocene) sediments overlying the aquifer. In contrast, a shallow fractured rock aquifer in West Trenton, New Jersey, exhibited lower TOC concentrations (47 to 325 microM; 0.6 to 3.9 mg/L) but higher THNS and THAA yields (approximately 1% to 4%). These higher yields were consistent with the younger, and thus more bioavailable, TOC being mobilized from modern soils overlying the aquifer. Consistent with these apparent differences in TOC bioavailability, no significant correlation between TOC and dissolved inorganic carbon (DIC), a product of organic carbon mineralization, was observed at Kings Bay, whereas a strong correlation was observed at West Trenton. In contrast to TOC, THNS and THAA concentrations were observed to correlate with DIC at the Kings Bay site. These observations suggest that biochemical indicators such as THNS and THAA may provide information concerning the bioavailability of organic carbon present in ground water that is not available from TOC measurements alone.


Subject(s)
Carbon/analysis , Organic Chemicals/analysis , Water Movements , Water Supply/analysis , Amino Acids/analysis , Carbohydrates/analysis , Environmental Monitoring/methods , Geography , Georgia
11.
Brain Res Bull ; 72(1): 66-73, 2007 Apr 02.
Article in English | MEDLINE | ID: mdl-17303509

ABSTRACT

Previous functional investigations in rats failed to demonstrate that the classical cholinesterase inhibitor, physostigmine, can compensate for cortical cholinergic deficit induced by deafferentation from the nucleus basalis magnocellularis (NBM). As these studies were carried out shortly after NBM lesion (1-2 weeks), we sought to determine whether compensatory effects of physostigmine would appear at a longer postlesion time (3-5 weeks). Cerebral blood flow was used as a quantitative measure of brain function. At 3-5 weeks after unilateral NBM lesion, interhemispheric comparisons in resting conditions showed that the cortical cholinergic deficit was still present and that blood flow was lower in cortical areas on the lesion side, similarly to what was observed after 1-2 weeks, while basal blood flow in intact hemispheres remained unchanged. In contrast, under physostigmine, blood flow became significantly lower in deafferented cortical areas at 3-5 weeks postlesion time, whereas there were no significant interhemispheric differences in the short term. Comparisons with saline-infused rats showed reduced blood flow responses to physostigmine in forebrain regions, e.g. in the parietal cortex from 83% to 25% at 1-2 and 3-5 weeks postlesion, respectively. These changes cannot be ascribed to a global loss of reactivity, since responses in brainstem regions (medulla, cerebellum) remained unchanged statistically. The results demonstrate a reduced responsiveness to physostigmine at the longer postlesion time, and support the existence of a cholinosensitive mechanism antagonizing NBM influence. This mechanism may limit the activating effects of cholinergic agonists in the forebrain after NBM deafferentation.


Subject(s)
Cerebrovascular Circulation/drug effects , Cholinesterase Inhibitors/pharmacology , Physostigmine/pharmacology , Prosencephalon/drug effects , Analysis of Variance , Animals , Basal Nucleus of Meynert/injuries , Basal Nucleus of Meynert/physiopathology , Choline O-Acetyltransferase/metabolism , Denervation/methods , Excitatory Amino Acid Agonists/toxicity , Ibotenic Acid/toxicity , Male , Models, Biological , Prosencephalon/blood supply , Prosencephalon/physiopathology , Rats , Rats, Sprague-Dawley , Time Factors
12.
Neurobiol Dis ; 22(1): 177-86, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16361106

ABSTRACT

Caspases play a major role in the infarction process that follows occlusion of cerebral arteries and are important targets for stroke therapy. We have generated three fusion proteins that link various domains of the X chromosome-linked inhibitor of apoptosis (XIAP), a potent caspase inhibitor, to the protein transduction domain (PTD) of HIV-1/Tat, and have tested their efficacy after distal occlusion of the middle cerebral artery (dMCAO) in mice. PTD-XIAP failed to accumulate in brain structures after intravenous (iv) delivery, but properly transduced cortical cells when applied topically. Shorter constructs efficiently targeted the lesion after iv delivery. All proteins retained their caspase inhibitory activity and significantly reduced infarct volumes. PTD-XIAP reversed long-term impairments in the water maze test. Sequential activation of transcription factors was observed, suggesting that the effects of XIAP are mediated by both direct inhibition of apoptotic mechanisms and secondary regulation of transcription factors involved in neuronal survival.


Subject(s)
Brain Ischemia/drug therapy , Cerebral Cortex/drug effects , Recombinant Fusion Proteins/pharmacology , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Brain Ischemia/genetics , Brain Ischemia/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Cerebral Infarction/drug therapy , Cerebral Infarction/physiopathology , Cerebral Infarction/prevention & control , Disease Models, Animal , Gene Products, tat/genetics , Gene Products, tat/pharmacology , Gene Products, tat/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Infusion Pumps , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Protein Structure, Tertiary/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/therapeutic use , Regulatory Elements, Transcriptional/drug effects , Regulatory Elements, Transcriptional/genetics , Transcriptional Activation/drug effects , Transcriptional Activation/physiology , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/therapeutic use
13.
Stroke ; 36(5): 1053-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15817893

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited small vessel disease causing stroke and dementia. The disease is caused by highly stereotyped mutations in NOTCH3, which is restrictively expressed in vascular smooth muscle cells (VSMCs). The mechanisms of compromised cerebral hemodynamics in CADASIL remain to be elucidated. We tested the hypothesis that mutant NOTCH3 impairs the vasomotor function of cerebral vessels. METHODS: Vasomotor function was examined in vivo in transgenic mice expressing a mutant NOTCH3 in VSMCs (TgNotch3R90C). Mice develop an age-dependent arteriopathy similar to that seen in CADASIL, without brain parenchyma lesions. Using laser-Doppler flowmetry, we assessed in awake TgNotch3R90C mice and wild-type littermates the cerebrovascular reactivity to 2 potent vasodilator stimuli (acetazolamide and hypercapnia) and cerebral blood flow (CBF) autoregulation during stepwise blood pressure elevations and reductions. Mice were studied at 18 months of age, when the CADASIL features are apparent, and at 10 months of age, before their appearance. RESULTS: Eighteen-month-old TgNotch3R90C mice showed reduced responses to hypercapnia and acetazolamide, higher cerebrovascular resistance during hypertension, and their lower limit of CBF autoregulation was shifted to higher blood pressures. Cerebrovascular responses were similarly impaired in 10-month-old TgNotch3R90C mice. CONCLUSIONS: Cerebrovascular reactivity is compromised early in TgNotch3R90C mice. The data show an impaired autoregulation and are suggestive of a decreased relaxation or increased resistance of cerebral vessels. Our findings indicate that vascular dysfunction is an early pathogenic event that may promote the subsequent development of brain ischemia in CADASIL.


Subject(s)
CADASIL/physiopathology , Cerebrovascular Circulation , Proto-Oncogene Proteins/genetics , Receptors, Cell Surface/genetics , Acetazolamide/pharmacology , Animals , Blood Pressure , CADASIL/metabolism , Disease Models, Animal , Female , Homeostasis , Hypercapnia/physiopathology , Laser-Doppler Flowmetry , Male , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Mutation , Proto-Oncogene Proteins/metabolism , Receptor, Notch3 , Receptor, Notch4 , Receptors, Cell Surface/metabolism , Receptors, Notch , Vasodilation
14.
Neurobiol Dis ; 19(1-2): 38-46, 2005.
Article in English | MEDLINE | ID: mdl-15837559

ABSTRACT

We have studied the functional repercussions of cerebrovascular abnormalities in transgenic mice overexpressing TGF-beta1. These mice develop Alzheimer's disease-like vascular and meningeal alterations without parenchymal degeneration. Autoradiographic cerebral blood flow measurements in 9-month-old TGF-beta1 mice compared to non-transgenic littermates provided evidence of reduced tissue perfusion, most prominent in limbic regions. A highly significant inverse correlation was found between the density of thioflavin-S-positive blood vessels and blood flow in the hippocampus and the cortex. An inverse correlation was likewise found between meningeal staining and blood flow in thalamic nuclei and regions of high blood flow. Thus, the vascular abnormalities were associated locally with reduced perfusion rate and more widely with limitation in the blood flow. These chronic changes may be related to fibrillar and soluble A beta peptides, the amount of which was almost doubled in the brains of TGF-beta1 mice. Comparison with previous results of cerebral glucose utilization in TGF-beta1 mice shows that reduced utilization preferentially occurred in regions with a high metabolic rate and a relatively low blood flow, suggesting that the metabolic needs are not met by blood supply in these regions.


Subject(s)
Alzheimer Disease/metabolism , Brain/blood supply , Brain/metabolism , Transforming Growth Factor beta/biosynthesis , Alzheimer Disease/genetics , Animals , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/metabolism , Mice , Mice, Transgenic , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta1
15.
Stroke ; 36(1): 113-7, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15569862

ABSTRACT

BACKGROUND AND PURPOSE: CADASIL is an inherited small-vessel disease responsible for lacunar strokes and cognitive impairment. The disease is caused by highly stereotyped mutations in Notch3, the expression of which is highly restricted to vascular smooth muscle cells (VSMCs). The underlying vasculopathy is characterized by degeneration of VSMCs and the accumulation of granular osmiophilic material (GOM) and Notch3 protein within the cell surface of these cells. In this study, we assessed early functional changes related to the expression of mutant Notch3 in resistance arteries. METHODS: Vasomotor function was examined in vitro in arteries from transgenic mice that express a mutant Notch3 in VSMC. Tail artery segments from transgenic and normal wild-type male mice were mounted on small-vessel arteriographs, and reactivity to mechanical (flow and pressure) forces and pharmacological stimuli were determined. Mice were studied at 10 to 11 months of age when VSMC degeneration, GOM deposits, and Notch3 accumulation were not yet present. RESULTS: Passive arterial diameter, contraction to phenylephrine, and endothelium-dependent relaxation to acetylcholine were unaffected in transgenic mice. By contrast, flow-induced dilation was significantly decreased and pressure-induced myogenic tone significantly increased in arteries from transgenic mice compared with wild-type mice. CONCLUSIONS: This is the first study to our knowledge providing evidence that mutant Notch3 impairs selectively the response of resistance arteries to flow and pressure. The data suggest an early role of vascular dysfunction in the pathogenic process of the disease.


Subject(s)
CADASIL/physiopathology , Mechanotransduction, Cellular , Proto-Oncogene Proteins/genetics , Receptors, Cell Surface/genetics , Vasoconstriction , Vasodilation , Animals , Arteries/drug effects , Arteries/physiopathology , CADASIL/etiology , Disease Models, Animal , In Vitro Techniques , Male , Mice , Mice, Transgenic , Mutation , Phenylephrine/pharmacology , Pressure , Receptor, Notch3 , Receptor, Notch4 , Receptors, Notch , Stress, Mechanical , Vasoconstrictor Agents/pharmacology
16.
Genes Dev ; 18(22): 2730-5, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15545631

ABSTRACT

Formation of a fully functional artery proceeds through a multistep process. Here we show that Notch3 is required to generate functional arteries in mice by regulating arterial differentiation and maturation of vascular smooth muscle cells (vSMC). In adult Notch3-/- mice distal arteries exhibit structural defects and arterial myogenic responses are defective. The postnatal maturation stage of vSMC is deficient in Notch3-/- mice. We further show that Notch3 is required for arterial specification of vSMC but not of endothelial cells. Our data reveal Notch3 to be the first cell-autonomous regulator of arterial differentiation and maturation of vSMC.


Subject(s)
Cell Differentiation , Endothelial Cells/cytology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Proto-Oncogene Proteins/physiology , Receptors, Cell Surface/physiology , Actins/metabolism , Animals , Blood Flow Velocity , Blood Pressure , Cells, Cultured , Desmin/metabolism , Endothelial Cells/metabolism , Homozygote , Humans , In Situ Hybridization , Lac Operon/physiology , Mice , Mice, Knockout , Mice, Transgenic , Microfilament Proteins/genetics , Microfilament Proteins/physiology , Muscle Proteins/genetics , Muscle Proteins/physiology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Proto-Oncogene Proteins/genetics , Receptor, Notch3 , Receptor, Notch4 , Receptors, Cell Surface/genetics , Receptors, Notch , Swine
17.
J Neuroinflammation ; 1(1): 11, 2004 Jul 02.
Article in English | MEDLINE | ID: mdl-15285804

ABSTRACT

BACKGROUND: The over-expression of transforming growth factor beta-1(TGF-beta1) has been reported to cause hydrocephalus, glia activation, and vascular amyloidbeta (Abeta) deposition in mouse brains. Since these phenomena partially mimic the cerebral amyloid angiopathy (CAA) concomitant to Alzheimer's disease, the findings in TGF-beta1 over-expressing mice prompted the hypothesis that CAA could be caused or enhanced by the abnormal production of TGF-beta1. This idea was in accordance with the view that chronic inflammation contributes to Alzheimer's disease, and drew attention to the therapeutic potential of anti-inflammatory drugs for the treatment of Abeta-elicited CAA. We thus studied the effect of anti-inflammatory drug administration in TGF-beta1-induced pathology. METHODS: Two-month-old TGF-beta1 mice and littermate controls were orally administered pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, or ibuprofen, a non steroidal anti-inflammatory agent, for two months. Glia activation was assessed by immunohistochemistry and western blot analysis; Abeta precursor protein (APP) by western blot analysis; Abeta deposition by immunohistochemistry, thioflavin-S staining and ELISA; and hydrocephalus by measurements of ventricle size on autoradiographies of brain sections. Results are expressed as means +/- SD. Data comparisons were carried with the Student's T test when two groups were compared, or ANOVA analysis when more than three groups were analyzed. RESULTS: Animals displayed glia activation, hydrocephalus and a robust thioflavin-S-positive vascular deposition. Unexpectedly, these deposits contained no Abeta or serum amyloid P component, a common constituent of amyloid deposits. The thioflavin-S-positive material thus remains to be identified. Pioglitazone decreased glia activation and basal levels of Abeta42- with no change in APP contents - while it increased hydrocephalus, and had no effect on the thioflavin-S deposits. Ibuprofen mimicked the reduction of glia activation caused by pioglitazone and the lack of effect on the thioflavin-S-labeled deposits. CONCLUSIONS: i) TGF-beta1 over-expressing mice may not be an appropriate model of Abeta-elicited CAA; and ii) pioglitazone has paradoxical effects on TGF-beta1-induced pathology suggesting that anti-inflammatory therapy may reduce the damage resulting from active glia, but not from vascular alterations or hydrocephalus. Identification of the thioflavin-S-positive material will facilitate the full appraisal of the clinical implication of the effects of anti-inflammatory drugs, and provide a more thorough understanding of TGF-beta1 actions in brain.

18.
Ann N Y Acad Sci ; 977: 87-95, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12480736

ABSTRACT

Cerebrovascular abnormalities, such as reduced blood flow, microvascular fibrosis, and cerebrovascular amyloid angiopathy, are prominent in Alzheimer's disease (AD). However, their etiology is poorly understood and it is unclear whether cerebrovascular changes contribute to functional impairments in the absence of neurodegeneration. In humans with AD, transforming growth factor-beta1 (TGF-beta1) mRNA levels in the midfrontal gyrus correlate positively with the relative degree of cerebrovascular amyloid deposition in that brain region, suggesting a possible role for TGF-beta1 in human cerebrovascular abnormalities. Transgenic mice overexpressing TGF-beta1 in astrocytes develop AD-like cerebrovascular abnormalities, including perivascular astrocytosis, microvascular basement membrane thickening, and accumulation of thioflavin S-positive amyloid in the absence of parenchymal degeneration. Mice overexpressing TGF-beta1 alone or in addition to human amyloid precursor protein (hAPP) show selective accumulation of human beta-amyloid (Abeta) in blood vessels and develop cerebral hemorrhages in old age. In 9-month-old TGF-beta1 transgenic mice, cerebral blood flow (CBF) in the limbic system was significantly less than in nontransgenic littermate controls. Aged TGF-beta1 mice also showed overall reduced cerebral glucose uptake (CGU) as a measure of brain activity. Thus, chronic overproduction of TGF-beta1 in the brain results in structural and functional impairments reminiscent of those in AD cases with amyloid angiopathy.


Subject(s)
Cerebrovascular Circulation/physiology , Transforming Growth Factor beta/pharmacology , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Cerebral Amyloid Angiopathy/physiopathology , Cerebrovascular Circulation/drug effects , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Models, Neurological , Transforming Growth Factor beta1
19.
J Cereb Blood Flow Metab ; 22(3): 289-98, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11891434

ABSTRACT

SUMMARY: The generally accepted concept that astrocytes are highly resistant to hypoxic/ischemic conditions has been challenged by an increasing amount of data. Considering the differences in functional implications of protoplasmic versus fibrous astrocytes, the authors have investigated the possibility that those discrepancies come from specific behaviors of the two cell types. The reactivity and fate of protoplasmic and fibrous astrocytes were observed after permanent occlusion of the medial cerebral artery in mice. A specific loss of glial fibrillary acidic protein (GFAP) immunolabeling in protoplasmic astrocytes occurred within minutes in the area with total depletion of regional CBF (rCBF) levels, whereas "classical" astrogliosis was observed in areas with remaining rCBF. Severe disturbance of cell function, as suggested by decreased GFAP content and increased permeability of the blood-brain barrier to macromolecules, was rapidly followed by necrotic cell death, as assessed by ultrastructure and by the lack of activation of the apoptotic protease caspase-3. In contrast to the response of protoplasmic astrocytes, fibrous astrocytes located at the brain surface and in deep cortical layers displayed a transient and limited hypertrophy, with no conspicuous cell death. These results point to a differential sensitivity of protoplasmic versus fibrous cortical astrocytes to blood deprivation, with a rapid demise of the former, adding to the suggestion that protoplasmic astrocytes play a crucial role in the pathogenesis of ischemic injury.


Subject(s)
Astrocytes/pathology , Cerebral Cortex/pathology , Ischemic Attack, Transient/pathology , Astrocytes/classification , Astrocytes/ultrastructure , Blood-Brain Barrier/physiology , Cerebral Cortex/blood supply , Cerebral Cortex/ultrastructure , Cerebrovascular Circulation/physiology , Glial Fibrillary Acidic Protein/metabolism , Kinetics , Neuroglia/pathology , Regional Blood Flow/physiology
SELECTION OF CITATIONS
SEARCH DETAIL