Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Mol Diagn ; 24(7): 719-726, 2022 07.
Article in English | MEDLINE | ID: mdl-35580751

ABSTRACT

Titin protein is responsible for muscle elasticity. The TTN gene, composed of 364 exons, is subjected to extensive alternative splicing and leads to different isoforms expressed in skeletal and cardiac muscle. Variants in TTN are responsible for myopathies with a wide phenotypic spectrum and autosomal dominant or recessive transmission. The I-band coding domain, highly subject to alternative splicing, contains a three-zone block of repeated sequences with 99% homology. Sequencing and localization of variants in these areas are complex when using short-reads sequencing, a second-generation sequencing technique. We have implemented a protocol based on the third-generation sequencing technology (long-reads sequencing). This new method allows us to localize variants in these repeated areas to improve the diagnosis of TTN-related myopathies and offer the analysis of relatives in postnatal or in prenatal screening.


Subject(s)
Muscular Diseases , Alternative Splicing/genetics , Connectin/genetics , Exons/genetics , Humans , Muscular Diseases/genetics , Protein Isoforms/genetics
2.
Genes (Basel) ; 12(8)2021 07 31.
Article in English | MEDLINE | ID: mdl-34440373

ABSTRACT

Diagnosis of myopathies is challenged by the high genetic heterogeneity and clinical overlap of the various etiologies. We previously reported a Next-Generation Sequencing strategy to identify genetic etiology in patients with undiagnosed Limb-Girdle Muscular Dystrophies, Congenital Myopathies, Congenital Muscular Dystrophies, Distal Myopathies, Myofibrillar Myopathies, and hyperCKemia or effort intolerance, using a large gene panel including genes classically associated with other entry diagnostic categories. In this study, we report the comprehensive clinical-biological strategy used to interpret NGS data in a cohort of 156 pediatric and adult patients, that included Copy Number Variants search, variants filtering and interpretation according to ACMG guidelines, segregation studies, deep phenotyping of patients and relatives, transcripts and protein studies, and multidisciplinary meetings. Genetic etiology was identified in 74 patients, a diagnostic yield (47.4%) similar to previous studies. We identified 18 patients (10%) with causative variants in different genes (ACTA1, RYR1, NEB, TTN, TRIP4, CACNA1S, FLNC, TNNT1, and PAPBN1) that resulted in milder and/or atypical phenotypes, with high intrafamilial variability in some cases. Mild phenotypes could mostly be explained by a less deleterious effect of variants on the protein. Detection of inter-individual variability and atypical phenotype-genotype associations is essential for precision medicine, patient care, and to progress in the understanding of the molecular mechanisms of myopathies.


Subject(s)
Genotype , Muscular Diseases/pathology , Phenotype , Adult , Child , Cohort Studies , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Muscular Diseases/diagnosis , Muscular Diseases/genetics
3.
Ann Clin Transl Neurol ; 8(9): 1906-1912, 2021 09.
Article in English | MEDLINE | ID: mdl-34312993

ABSTRACT

The aim of this study was to analyze patients from two distinct families with a novel distal titinopathy phenotype associated with exactly the same CNV in the TTN gene. We used an integrated strategy combining deep phenotyping and complete molecular analyses in patients. The CNV is the most proximal out-of-frame TTN variant reported and leads to aberrant splicing transcripts leading to a frameshift. In this case, the dominant effect would be due to dominant-negative and/or haploinsufficiency. Few CNV in TTN have been reported to date. Our data represent a novel phenotype-genotype association and provides hypotheses for its dominant effects.


Subject(s)
Connectin/genetics , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Muscular Dystrophies/physiopathology , Aged , Aged, 80 and over , DNA Copy Number Variations , Female , Humans , Male , Middle Aged , Pedigree , Phenotype
4.
Eur J Paediatr Neurol ; 31: 78-87, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33667896

ABSTRACT

With the exception of infantile spinal muscular atrophy (SMA) and congenital myotonic dystrophy 1 (DM1), congenital myopathies and muscular dystrophies with neonatal respiratory distress pose diagnostic challenges. Next-generation sequencing (NGS) provides hope for the diagnosis of these rare diseases. We evaluated the efficiency of next-generation sequencing (NGS) in ventilated newborns with peripheral hypotonia. We compared the results of our previous study in a cohort of 19 patients analysed by Sanger sequencing from 2007 to 2012, with a diagnostic yield of 26% (5/19), and those of a new retrospective study in 28 patients from 2007 to 2018 diagnosed using MyoPanel, a neuromuscular disease panel, with a diagnostic yield of 43% (12/28 patients). Pathogenic variants were found in five genes: ACTA1 (n = 4 patients), RYR1 (n = 2), CACNA1S (n = 1), NEB (n = 3), and MTM1 (n = 2). Myopanel increased the diagnosis of congenital neuromuscular diseases, but more than half the patients remained undiagnosed. Whole exome sequencing did not seem to fully respond to this diagnostic limitation. Therefore, explorations with whole genome sequencing will be the next step.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Neuromuscular Diseases/diagnosis , Respiratory Distress Syndrome, Newborn/diagnosis , Respiratory Distress Syndrome, Newborn/etiology , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Neuromuscular Diseases/genetics , Retrospective Studies
5.
Neuromuscul Disord ; 30(11): 877-887, 2020 11.
Article in English | MEDLINE | ID: mdl-33127292

ABSTRACT

Next generation sequencing (NGS) has allowed the titin gene (TTN) to be identified as a major contributor to neuromuscular disorders, with high clinical heterogeneity. The mechanisms underlying the phenotypic variability and the dominant or recessive pattern of inheritance are unclear. Titin is involved in the formation and stability of the sarcomeres. The effects of the different TTN variants can be harmless or pathogenic (recessive or dominant) but the interpretation is tricky because the current bioinformatics tools can not predict their functional impact effectively. Moreover, TTN variants are very frequent in the general population. The combination of deep phenotyping associated with RNA molecular analyses, western blot (WB) and functional studies is often essential for the interpretation of genetic variants in patients suspected of titinopathy. In line with the current guidelines and suggestions, we implemented for patients with skeletal myopathy and with potentially disease causing TTN variant(s) an integrated genotype-transcripts-protein-phenotype approach, associated with phenotype and variants segregation studies in relatives and confrontation with published data on titinopathies to evaluate pathogenic effects of TTN variants (even truncating ones) on titin transcripts, amount, size and functionality. We illustrate this integrated approach in four patients with recessive congenital myopathy.


Subject(s)
Connectin/genetics , Genotype , Muscular Diseases/genetics , Phenotype , Adolescent , Child , Female , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Muscle, Skeletal/pathology , Mutation
6.
J Mol Diagn ; 20(4): 533-549, 2018 07.
Article in English | MEDLINE | ID: mdl-29792937

ABSTRACT

Myopathies and muscular dystrophies (M-MDs) are genetically heterogeneous diseases, with >100 identified genes, including the giant and complex titin (TTN) and nebulin (NEB) genes. Next-generation sequencing technology revolutionized M-MD diagnosis and revealed high frequency of TTN and NEB variants. We developed a next-generation sequencing diagnostic strategy targeted to the coding sequences of 135 M-MD genes. Comparison of two targeted capture technologies (SeqCap EZ Choice library capture kit and Nextera Rapid Capture Custom Enrichment kit) and of two whole-exome sequencing kits (SureSelect V5 and TruSeq RapidExome capture) revealed best coverage with the SeqCap EZ Choice protocol. A marked decrease in coverage was observed with the other kits, affecting mostly the first exons of genes and the repeated regions of TTN and NEB. Bioinformatics analysis strategy was fine-tuned to achieve optimal detection of variants, including small insertions/deletions (INDELs) and copy number variants (CNVs). Analysis of a cohort of 128 patients allowed the detection of 52 substitutions, 13 INDELs (including a trinucleotide repeat expansion), and 3 CNVs. Two INDELs were localized in the repeated regions of NEB, suggesting that these mutations may be frequent but underestimated. A large deletion was also identified in TTN that is, to our knowledge, the first published CNV in this gene.


Subject(s)
Connectin/genetics , High-Throughput Nucleotide Sequencing/methods , Muscle Proteins/genetics , Muscular Dystrophies/diagnosis , Muscular Dystrophies/genetics , Computational Biology , DNA/genetics , DNA Copy Number Variations/genetics , Exons/genetics , Heterozygote , Humans , INDEL Mutation/genetics , Reproducibility of Results
7.
J Mol Diagn ; 20(4): 465-473, 2018 07.
Article in English | MEDLINE | ID: mdl-29689380

ABSTRACT

Interpretation of next-generation sequencing constitutes the main limitation of molecular diagnostics. In diagnosing myopathies and muscular dystrophies, another issue is efficiency in predicting the pathogenicity of variants identified in large genes, especially TTN; current in silico prediction tools show limitations in predicting and ranking the numerous variants of such genes. We propose a variant-prioritization tool, the MoBiDiCprioritization algorithm (MPA). MPA is based on curated interpretation of data on previously reported variants, biological assumptions, and splice and missense predictors, and is used to prioritize all types of single-nucleotide variants. MPA was validated by comparing its sensitivity and specificity to those of dbNSFP database prediction tools, using a data set composed of DYSF, DMD, LMNA, NEB, and TTN variants extracted from expert-reviewed and ExAC databases. MPA obtained the best annotation rates for missense and splice variants. As MPA aggregates the results from several predictors, individual predictor errors are counterweighted, improving the sensitivity and specificity of missense and splice variant predictions. We propose a sequential use of MPA, beginning with the selection of variants with higher scores and followed by, in the absence of candidate pathologic variants, consideration of variants with lower scores. We provide scripts and documentation for free academic use and a validated annotation pipeline scaled for panel and exome sequencing to prioritize single-nucleotide variants from a VCF file.


Subject(s)
Algorithms , High-Throughput Nucleotide Sequencing/methods , Molecular Diagnostic Techniques/methods , Molecular Sequence Annotation/methods , Polymorphism, Single Nucleotide/genetics , Computer Simulation , Humans , Mutation, Missense/genetics , RNA Splicing/genetics
8.
J Mol Diagn ; 18(5): 731-740, 2016 09.
Article in English | MEDLINE | ID: mdl-27425820

ABSTRACT

Diagnosis of dystrophinopathies needs to combine several techniques for detecting copy number variations (CNVs; two-thirds of mutations) and single nucleotide variations (SNVs). We participated in the design of an amplicon-based PCR kit (Multiplicom) for sequencing with a GS-Junior instrument (Roche) and later with a MiSeq instrument (Illumina). We compared two different software programs, MiSeq Reporter (Illumina) and SeqNext (JSI Medical Systems) for data analyses. Testing of six patient DNA samples carrying 72 SNVs in the DMD gene showed an experimental sensitivity of 91.7% with MiSeq Reporter, 98.6% with SeqNext, and >99.9% with both, demonstrating the need to use two different software programs. Analytical specificity was >98%. Fifty-eight additional patient DNAs were analyzed, and 25 deleterious mutations were identified, without false-negative results. We also tested the possibility for our protocol to identify CNVs. We performed additional next-generation sequencing experiments on 50 DNAs and identified 28 CNVs, all confirmed by multiple ligation probe amplification. Statistical analyses on amplicons without CNV (n = 3797), amplicons with heterozygous deletions (n = 51) or duplications (n = 191), and with hemizygous duplications (n = 63) showed a sensitivity and specificity of >99.9%. We implemented a strategy to simultaneously detect SNVs and CNVs in the DMD gene with one comprehensive technique, allowing considerable reduction of time and cost burden for diagnosis of dystrophinopathies.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , High-Throughput Nucleotide Sequencing , Molecular Diagnostic Techniques , Alleles , Disease Management , Female , Gene Library , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Molecular Diagnostic Techniques/methods , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Polymorphism, Single Nucleotide , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...