Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 50(19): 4572-84, 2007 Sep 20.
Article in English | MEDLINE | ID: mdl-17722899

ABSTRACT

We previously reported the discovery of substituted benzimidazole fusion inhibitors with nanomolar activity against respiratory syncytial virus (Andries, K.; et al. Antiviral Res. 2003, 60, 209-219). A lead compound of the series was selected for preclinical evaluation. This drug candidate, JNJ-2408068 (formerly R170591, 1), showed long tissue retention times in several species (rat, dog, and monkey), creating cause for concern. We herein describe the optimization program to develop compounds with improved properties in terms of tissue retention. We have identified the aminoethyl-piperidine moiety as being responsible for the long tissue retention time of 1. We have investigated the replacement or the modification of this group, and we suggest that the pKa of this part of the molecules influences both the antiviral activity and the pharmacokinetic profile. We were able to identify new respiratory syncytial virus inhibitors with shorter half-lives in lung tissue.


Subject(s)
Antiviral Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Piperidines/chemical synthesis , Pyridines/chemical synthesis , Respiratory Syncytial Viruses/drug effects , Viral Fusion Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Benzimidazoles/pharmacokinetics , Benzimidazoles/pharmacology , HeLa Cells , Humans , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Male , Piperidines/pharmacokinetics , Piperidines/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tissue Distribution
2.
J Med Chem ; 48(6): 2167-75, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-15771459

ABSTRACT

The influx of leukocytes (eosinophils, lymphocytes, and monocytes) into the airways and their production of proinflammatory cytokines contribute to the severity of allergic asthma. We describe here the synthesis and pharmacological evaluation of a series of triazinylphenylalkylthiazolecarboxylic acid esters that were designed to act as lung-specific antedrugs and inhibitors of the production of interleukin (IL)-5, a primary eosinophil-activating and proinflammatory cytokine. Closer examination of the hydroxypropyl ester, 15, indicated its high metabolic stability (t(1/2) > 240 min) in human lung S9 fraction but rapid conversion (t(1/2) = 15 min) into the pharmacologically inactive carboxylic acid by human liver preparations. In stimulated human whole blood cultures, 15 reduced not only the production of IL-5 (IC(50) = 78 nM) but also the biosynthesis of the monocyte chemotactic proteins MCP-1 (IC(50) = 220 nM), MCP-2 (IC(50) = 580 nM), and MCP-3 (IC(50) = 80 nM). In vivo, intratracheal administration of 15 (6 mg/animal) to allergic sheep, either before (-4 h) or after (+1.5 h) the pulmonary allergen challenge, completely abrogated the late-phase airway response and reduced the bronchial hyperreactivity to inhaled carbachol.


Subject(s)
Asthma/drug therapy , Bronchodilator Agents/chemical synthesis , Cytokines/antagonists & inhibitors , Thiazoles/chemical synthesis , Triazines/chemical synthesis , Adult , Animals , Asthma/immunology , Asthma/physiopathology , Bronchodilator Agents/metabolism , Bronchodilator Agents/pharmacology , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/biosynthesis , Chemokine CCL7 , Chemokine CCL8 , Cytokines/biosynthesis , Esters/chemical synthesis , Esters/metabolism , Esters/pharmacology , Humans , In Vitro Techniques , Interleukin-4/antagonists & inhibitors , Interleukin-4/biosynthesis , Interleukin-5/antagonists & inhibitors , Interleukin-5/biosynthesis , Interleukin-8/antagonists & inhibitors , Interleukin-8/biosynthesis , Liver/metabolism , Lung/metabolism , Monocyte Chemoattractant Proteins/antagonists & inhibitors , Monocyte Chemoattractant Proteins/biosynthesis , Sheep , Thiazoles/metabolism , Thiazoles/pharmacology , Triazines/metabolism , Triazines/pharmacology
3.
Antiviral Res ; 60(3): 209-19, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14638397

ABSTRACT

A cell-based assay was used to discover compounds inhibiting respiratory syncytial virus (RSV)-induced fusion in HeLa/M cells. A lead compound was identified and subsequent synthesis of >300 analogues led to the identification of JNJ 2408068 (R170591), a low molecular weight (MW 395) benzimidazole derivative with an EC(50) (0.16 nM) against some lab strains almost 100,000 times better than that of ribavirin (15 microM). Antiviral activity was confirmed for subgroup A and B clinical isolates of human RSV and for a bovine RSV isolate. The compound did not inhibit the growth of representative viruses from other Paramyxovirus genera, i.e. HPIV2 and Mumps Virus (genus Rubulavirus), HPIV3 (genus Respirovirus), Measles virus (genus Morbillivirus) and hMPV. Efficacy in cytopathic effect inhibition assays correlated well with efficacy in virus yield reduction assays. A concentration of 10nM reduced RSV production 1000-fold in multi-cycle experiments, irrespective of the multiplicity of infection. Time of addition studies pointed to a dual mode of action: inhibition of virus-cell fusion early in the infection cycle and inhibition of cell-cell fusion at the end of the replication cycle. Two resistant mutants were raised and shown to have single point mutations in the F-gene (S398L and D486N). JNJ 2408068 was also shown to inhibit the release of proinflammatory cytokines IL-6, IL-8 and Rantes from RSV-infected A549 cells.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Respiratory Syncytial Viruses/drug effects , Antiviral Agents/chemistry , Cell Fusion , Cytokines/metabolism , Cytopathogenic Effect, Viral/drug effects , DNA Mutational Analysis , Drug Resistance, Viral/genetics , HeLa Cells , Humans , Metapneumovirus/drug effects , Metapneumovirus/growth & development , Molecular Weight , Morbillivirus/drug effects , Morbillivirus/growth & development , Point Mutation , Respiratory Syncytial Viruses/growth & development , Respiratory Syncytial Viruses/isolation & purification , Respiratory Syncytial Viruses/pathogenicity , Respirovirus/drug effects , Respirovirus/growth & development , Rubulavirus/drug effects , Rubulavirus/growth & development , Viral Fusion Proteins/genetics , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...