Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Mol Biol Cell ; : mbcE24020096T, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696255

ABSTRACT

Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using formincyk-1(ts) mutant C. elegans embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide with greatly reduced F-actin levels at the cell division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septinUNC-59 and anillinANI-1 at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into the regulation of cytokinesis in other cell types, especially in stem cells with high potency.

2.
EMBO J ; 43(6): 993-1014, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38378890

ABSTRACT

Entry into mitosis has been classically attributed to the activation of a cyclin B/Cdk1 amplification loop via a partial pool of this kinase becoming active at the end of G2 phase. However, how this initial pool is activated is still unknown. Here we discovered a new role of the recently identified PP2A-B55 inhibitor FAM122A in triggering mitotic entry. Accordingly, depletion of the orthologue of FAM122A in C. elegans prevents entry into mitosis in germline stem cells. Moreover, data from Xenopus egg extracts strongly suggest that FAM122A-dependent inhibition of PP2A-B55 could be the initial event promoting mitotic entry. Inhibition of this phosphatase allows subsequent phosphorylation of early mitotic substrates by cyclin A/Cdk, resulting in full cyclin B/Cdk1 and Greatwall (Gwl) kinase activation. Subsequent to Greatwall activation, Arpp19/ENSA become phosphorylated and now compete with FAM122A, promoting its dissociation from PP2A-B55 and taking over its phosphatase inhibition role until the end of mitosis.


Subject(s)
Caenorhabditis elegans , Protein Serine-Threonine Kinases , Animals , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Mitosis , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cyclin B/metabolism
3.
Methods Mol Biol ; 2740: 187-210, 2024.
Article in English | MEDLINE | ID: mdl-38393477

ABSTRACT

During eukaryotic cell division a microtubule-based structure, the mitotic spindle, aligns and segregates chromosomes between daughter cells. Understanding how this cellular structure is assembled and coordinated in space and in time requires measuring microtubule dynamics and visualizing spindle assembly with high temporal and spatial resolution. Visualization is often achieved by the introduction and the detection of molecular probes and fluorescence microscopy. Microtubules and mitotic spindles are highly conserved across eukaryotes; however, several technical limitations have restricted these investigations to only a few species. The ability to monitor microtubule and chromosome choreography in a wide range of species is fundamental to reveal conserved mechanisms or unravel unconventional strategies that certain forms of life have developed to ensure faithful partitioning of chromosomes during cell division. Here, we describe a technique based on injection of purified proteins that enables the visualization of microtubules and chromosomes with a high contrast in several divergent marine embryos. We also provide analysis methods and tools to extract microtubule dynamics and monitor spindle assembly. These techniques can be adapted to a wide variety of species in order to measure microtubule dynamics and spindle assembly kinetics when genetic tools are not available or in parallel to the development of such techniques in non-model organisms.


Subject(s)
Microtubules , Spindle Apparatus , Spindle Apparatus/metabolism , Microtubules/metabolism , Cell Cycle , Cell Division , Chromosomes/metabolism , Tubulin/metabolism , Mitosis
4.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014027

ABSTRACT

Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using formin cyk-1 (ts) mutant C. elegans embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide without detectable F-actin at the division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septin UNC-59 and anillin ANI-1 at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into cytokinetic regulation in other cell types, especially in stem cells with high potency.

5.
Elife ; 122023 02 17.
Article in English | MEDLINE | ID: mdl-36799894

ABSTRACT

During cell division, chromosome segregation is orchestrated by a microtubule-based spindle. Interaction between spindle microtubules and kinetochores is central to the bi-orientation of chromosomes. Initially dynamic to allow spindle assembly and kinetochore attachments, which is essential for chromosome alignment, microtubules are eventually stabilized for efficient segregation of sister chromatids and homologous chromosomes during mitosis and meiosis I, respectively. Therefore, the precise control of microtubule dynamics is of utmost importance during mitosis and meiosis. Here, we study the assembly and role of a kinetochore module, comprised of the kinase BUB-1, the two redundant CENP-F orthologs HCP-1/2, and the CLASP family member CLS-2 (hereafter termed the BHC module), in the control of microtubule dynamics in Caenorhabditis elegans oocytes. Using a combination of in vivo structure-function analyses of BHC components and in vitro microtubule-based assays, we show that BHC components stabilize microtubules, which is essential for meiotic spindle formation and accurate chromosome segregation. Overall, our results show that BUB-1 and HCP-1/2 do not only act as targeting components for CLS-2 at kinetochores, but also synergistically control kinetochore-microtubule dynamics by promoting microtubule pause. Together, our results suggest that BUB-1 and HCP-1/2 actively participate in the control of kinetochore-microtubule dynamics in the context of an intact BHC module to promote spindle assembly and accurate chromosome segregation in meiosis.


Subject(s)
Caenorhabditis elegans Proteins , Spindle Apparatus , Animals , Spindle Apparatus/genetics , Microtubules , Meiosis , Kinetochores , Caenorhabditis elegans/genetics , Chromosome Segregation , Mitosis , Microtubule-Associated Proteins/genetics , Caenorhabditis elegans Proteins/genetics
6.
Front Cell Dev Biol ; 10: 967909, 2022.
Article in English | MEDLINE | ID: mdl-36105360

ABSTRACT

Cells require major physical changes to induce a proper repartition of the DNA. Nuclear envelope breakdown, DNA condensation and spindle formation are promoted at mitotic entry by massive protein phosphorylation and reversed at mitotic exit by the timely and ordered dephosphorylation of mitotic substrates. This phosphorylation results from the balance between the activity of kinases and phosphatases. The role of kinases in the control of mitosis has been largely studied, however, the impact of phosphatases has long been underestimated. Recent data have now established that the regulation of phosphatases is crucial to confer timely and ordered cellular events required for cell division. One major phosphatase involved in this process is the phosphatase holoenzyme PP2A-B55. This review will be focused in the latest structural, biochemical and enzymatic insights provided for PP2A-B55 phosphatase as well as its regulators and mechanisms of action.

7.
Cells ; 11(2)2022 01 12.
Article in English | MEDLINE | ID: mdl-35053364

ABSTRACT

During cell division, the mitotic spindle, a macromolecular structure primarily comprised of microtubules, drives chromosome alignment and partitioning between daughter cells. Mitotic spindles can sense cellular dimensions in order to adapt their length and mass to cell size. This scaling capacity is particularly remarkable during early embryo cleavage when cells divide rapidly in the absence of cell growth, thus leading to a reduction of cell volume at each division. Although mitotic spindle size scaling can occur over an order of magnitude in early embryos, in many species the duration of mitosis is relatively short, constant throughout early development and independent of cell size. Therefore, a key challenge for cells during embryo cleavage is not only to assemble a spindle of proper size, but also to do it in an appropriate time window which is compatible with embryo development. How spatial and temporal scaling of the mitotic spindle is achieved and coordinated with the duration of mitosis remains elusive. In this review, we will focus on the mechanisms that support mitotic spindle spatial and temporal scaling over a wide range of cell sizes and cellular contexts. We will present current models and propose alternative mechanisms allowing cells to spatially and temporally coordinate microtubule and mitotic spindle assembly.


Subject(s)
Microtubules/metabolism , Spindle Apparatus/metabolism , Animals , Cell Size , Humans , Models, Biological , Time Factors
8.
Curr Biol ; 30(22): 4534-4540.e7, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32946749

ABSTRACT

The forces generated by microtubules (MTs) and their associated motors orchestrate essential cellular processes ranging from vesicular trafficking to centrosome positioning [1, 2]. To date, most studies have focused on MT force exertion by motors anchored to a static surface, such as the cell cortex in vivo or glass surfaces in vitro [2-4]. However, motors also transport large cargos and endomembrane networks, whose hydrodynamic interactions with the viscous cytoplasm should generate sizable forces in bulk. Such forces may contribute to MT aster centration, organization, and orientation [5-14] but have yet to be evidenced and studied in a minimal reconstituted system. By developing a bulk motility assay, based on stabilized MTs and dynein-coated beads freely floating in a viscous medium away from any surface, we demonstrate that the motion of a cargo exerts a pulling force on the MT and propels it in opposite direction. Quantification of resulting MT movements for different motors, motor velocities, over a range of cargo sizes and medium viscosities shows that the efficiency of this mechanism is primarily determined by cargo size and MT length. Forces exerted by cargos are additive, allowing us to recapitulate tug-of-war situations or bi-dimensional motions of minimal asters. These data also reveal unappreciated effects of the nature of viscous crowders and hydrodynamic interactions between cargos and MTs, likely relevant to understand this mode of force exertion in living cells. This study reinforces the notion that endomembrane transport can exert significant forces on MTs.


Subject(s)
Cytoplasm/chemistry , Dyneins/metabolism , Microtubules/metabolism , Protozoan Proteins/metabolism , Cytoplasm/metabolism , Dictyostelium , Dyneins/genetics , Dyneins/isolation & purification , Hydrodynamics , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Viscosity
9.
Methods Cell Biol ; 145: 217-236, 2018.
Article in English | MEDLINE | ID: mdl-29957205

ABSTRACT

Caenorhabditis elegans is a self-fertilizing hermaphroditic worm. A single C. elegans worm therefore produces both male and female gametes that fuse to generate embryos. While sperm production stops at the end of the C. elegans larval development, oocytes are continuously generated and fertilized during the entire reproductive life of the adult worm. The molecular and cellular mechanisms involved in gametogenesis and the early embryonic divisions are highly conserved between worms and humans; thus C. elegans is a powerful model to study meiotic and mitotic cell divisions in a metazoan system. Additionally, the optical transparency of the worm combined with the ease of the genome-editing methods can be used to easily follow the subcellular behavior of any fluorescently tagged protein of interest using light microscopy approaches. Here we describe two methods for preparing live samples to study oocyte meiotic and early embryonic mitotic divisions by confocal microscopy in C. elegans.


Subject(s)
Caenorhabditis elegans/cytology , Embryo, Nonmammalian/cytology , Microscopy, Confocal/methods , Oocytes/cytology , Animals , Female , Fertilization/physiology , Humans , Male , Meiosis/physiology , Oogenesis/physiology , Spermatozoa/cytology
10.
Dev Cell ; 45(4): 496-511.e6, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29787710

ABSTRACT

Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume.


Subject(s)
Caenorhabditis elegans/embryology , Cell Size , Embryo, Nonmammalian/physiology , Microtubules/physiology , Paracentrotus/embryology , Spindle Apparatus/physiology , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , Embryo, Nonmammalian/cytology , Paracentrotus/physiology
11.
Development ; 144(9): 1674-1686, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28289130

ABSTRACT

In most species, oocytes lack centrosomes. Accurate meiotic spindle assembly and chromosome segregation - essential to prevent miscarriage or developmental defects - thus occur through atypical mechanisms that are not well characterized. Using quantitative in vitro and in vivo functional assays in the C. elegans oocyte, we provide novel evidence that the kinesin-13 KLP-7 promotes destabilization of the whole cellular microtubule network. By counteracting ectopic microtubule assembly and disorganization of the microtubule network, this function is strictly required for spindle organization, chromosome segregation and cytokinesis in meiotic cells. Strikingly, when centrosome activity was experimentally reduced, the absence of KLP-7 or the mammalian kinesin-13 protein MCAK (KIF2C) also resulted in ectopic microtubule asters during mitosis in C. elegans zygotes or HeLa cells, respectively. Our results highlight the general function of kinesin-13 microtubule depolymerases in preventing ectopic, spontaneous microtubule assembly when centrosome activity is defective or absent, which would otherwise lead to spindle microtubule disorganization and aneuploidy.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Chromosome Segregation , Cytokinesis , Kinesins/metabolism , Microtubules/metabolism , Oocytes/cytology , Oocytes/metabolism , HeLa Cells , Humans , Imaging, Three-Dimensional , Meiosis , Spindle Apparatus/metabolism
12.
Mol Biol Cell ; 27(9): 1479-87, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26985017

ABSTRACT

Microtubules (MTs) are cytoskeletal polymers that participate in diverse cellular functions, including cell division, intracellular trafficking, and templating of cilia and flagella. MTs undergo dynamic instability, alternating between growth and shortening via catastrophe and rescue events. The rates and frequencies of MT dynamic parameters appear to be characteristic for a given cell type. We recently reported that all MT dynamic parameters vary throughout differentiation of a smooth muscle cell type in intact Caenorhabditis elegans. Here we describe local differences in MT dynamics and a novel MT behavior: an abrupt change in growth rate (deceleration) of single MTs occurring in the cell periphery of these cells. MT deceleration occurs where there is a decrease in local soluble tubulin concentration at the cell periphery. This local regulation of tubulin concentration and MT deceleration are dependent on two novel homologues of human cylicin. These novel ORFs, which we name cylc-1 and -2, share sequence homology with stathmins and encode small, very basic proteins containing several KKD/E repeats. The TOG domain-containing protein ZYG-9(TOGp) is responsible for the faster polymerization rate within the cell body. Thus we have defined two contributors to the molecular regulation for this novel MT behavior.


Subject(s)
Microtubules/metabolism , Microtubules/physiology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cilia/metabolism , Cyclins/metabolism , Deceleration , Microtubule-Associated Proteins/metabolism , Microtubules/genetics , Models, Molecular , Polymerization , Stathmin , Tubulin/metabolism
13.
Mol Biol Cell ; 27(8): 1286-99, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26912796

ABSTRACT

During cytokinesis, the cell undergoes a dramatic shape change as it divides into two daughter cells. Cell shape changes in cytokinesis are driven by a cortical ring rich in actin filaments and nonmuscle myosin II. The ring closes via actomyosin contraction coupled with actin depolymerization. Of interest, ring closure and hence the furrow ingression are nonconcentric (asymmetric) within the division plane across Metazoa. This nonconcentricity can occur and persist even without preexisting asymmetric cues, such as spindle placement or cellular adhesions. Cell-autonomous asymmetry is not explained by current models. We combined quantitative high-resolution live-cell microscopy with theoretical modeling to explore the mechanistic basis for asymmetric cytokinesis in theCaenorhabditis eleganszygote, with the goal of uncovering basic principles of ring closure. Our theoretical model suggests that feedback among membrane curvature, cytoskeletal alignment, and contractility is responsible for asymmetric cytokinetic furrowing. It also accurately predicts experimental perturbations of conserved ring proteins. The model further suggests that curvature-mediated filament alignment speeds up furrow closure while promoting energy efficiency. Collectively our work underscores the importance of membrane-cytoskeletal anchoring and suggests conserved molecular mechanisms for this activity.


Subject(s)
Caenorhabditis elegans/cytology , Cell Membrane , Cytoskeleton , Feedback, Physiological , Models, Biological , Actin Cytoskeleton/metabolism , Animals , Caenorhabditis elegans Proteins/metabolism , Cytokinesis/physiology , Cytoskeleton/metabolism , Microfilament Proteins/metabolism , Myosin Type II/metabolism
15.
Nat Cell Biol ; 17(5): 697-705, 2015 May.
Article in English | MEDLINE | ID: mdl-25866924

ABSTRACT

A critical structure poised to coordinate chromosome segregation with division plane specification is the central spindle that forms between separating chromosomes after anaphase onset. The central spindle acts as a signalling centre that concentrates proteins essential for division plane specification and contractile ring constriction. However, the molecular mechanisms that control the initial stages of central spindle assembly remain elusive. Using Caenorhabditis elegans zygotes, we found that the microtubule-bundling protein SPD-1(PRC1) and the motor ZEN-4(MKLP-1) are required for proper central spindle structure during its elongation. In contrast, we found that the kinetochore controls the initiation of central spindle assembly. Specifically, central spindle microtubule assembly is dependent on kinetochore recruitment of the scaffold protein KNL-1, as well as downstream partners BUB-1, HCP-1/2(CENP-F) and CLS-2(CLASP); and is negatively regulated by kinetochore-associated protein phosphatase 1 activity. This in turn promotes central spindle localization of CLS-2(CLASP) and initial central spindle microtubule assembly through its microtubule polymerase activity. Together, our results reveal an unexpected role for a conserved kinetochore protein network in coupling two critical events of cell division: chromosome segregation and cytokinesis.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Cell Division , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Spindle Apparatus/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Cytokinesis , Kinesins/genetics , Kinesins/metabolism , Microscopy, Fluorescence , Microscopy, Video , Microtubule-Associated Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Signal Transduction , Spindle Apparatus/genetics , Time Factors
16.
PLoS One ; 9(10): e110689, 2014.
Article in English | MEDLINE | ID: mdl-25329167

ABSTRACT

The physical separation of a cell into two daughter cells during cytokinesis requires cell-intrinsic shape changes driven by a contractile ring. However, in vivo, cells interact with their environment, which includes other cells. How cytokinesis occurs in tissues is not well understood. Here, we studied cytokinesis in an intact animal during tissue biogenesis. We used high-resolution microscopy and quantitative analysis to study the three rounds of division of the C. elegans vulval precursor cells (VPCs). The VPCs are cut in half longitudinally with each division. Contractile ring breadth, but not the speed of ring closure, scales with cell length. Furrowing speed instead scales with division plane dimensions, and scaling is consistent between the VPCs and C. elegans blastomeres. We compared our VPC cytokinesis kinetics data with measurements from the C. elegans zygote and HeLa and Drosophila S2 cells. Both the speed dynamics and asymmetry of ring closure are qualitatively conserved among cell types. Unlike in the C. elegans zygote but similar to other epithelial cells, Anillin is required for proper ring closure speed but not asymmetry in the VPCs. We present evidence that tissue organization impacts the dynamics of cytokinesis by comparing our results on the VPCs with the cells of the somatic gonad. In sum, this work establishes somatic lineages in post-embryonic C. elegans development as cell biological models for the study of cytokinesis in situ.


Subject(s)
Caenorhabditis elegans/growth & development , Cytokinesis/physiology , Animals , Caenorhabditis elegans/cytology , Drosophila melanogaster , Female , HeLa Cells , Humans
17.
Dev Cell ; 29(2): 203-16, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24780738

ABSTRACT

Microtubules (MTs) are cytoskeletal polymers that undergo dynamic instability, the stochastic transition between growth and shrinkage phases. MT dynamics are required for diverse cellular processes and, while intrinsic to tubulin, are highly regulated. However, little is known about how MT dynamics facilitate or are regulated by tissue biogenesis and differentiation. We imaged MT dynamics in a smooth muscle-like lineage in intact developing Caenorhabditis elegans. All aspects of MT dynamics change significantly as stem-like precursors exit mitosis and, secondarily, as they differentiate. We found that suppression, but not enhancement, of dynamics perturbs differentiated muscle function in vivo. Distinct ensembles of MT-associated proteins are specifically required for tissue biogenesis versus tissue function. A CLASP family MT stabilizer and the depolymerizing kinesin MCAK are differentially required for MT dynamics in the precursor or differentiated cells, respectively. All of these multidimensional phenotypic comparisons were facilitated by a data display method called the diamond graph.


Subject(s)
Caenorhabditis elegans/cytology , Caenorhabditis elegans/growth & development , Cell Differentiation/physiology , Microtubules/physiology , Mitosis/physiology , Animals , Caenorhabditis elegans Proteins/physiology , Cell Lineage/physiology , Kinesins/physiology , Microtubule-Associated Proteins/physiology , Ovum/physiology , Reproduction/physiology , Spindle Apparatus/physiology , Tubulin/physiology
18.
Worm ; 3(3): e967611, 2014.
Article in English | MEDLINE | ID: mdl-26430551

ABSTRACT

Microtubules (MTs) are cytoskeletal filaments essential for many processes in eukaryotic cells. Assembled of tubulin subunits, MTs are dynamic structures that undergo successive and stochastic phases of polymerization and depolymerization, a behavior called dynamic instability. Dynamic instability has been extensively studied in cultured cells and in vitro using cytoplasmic extracts or reconstituted MTs. However, how MTs behave in intact tissues and how their dynamics are affected by or affect tissue function are poorly understood. Recent advances in high-resolution live imaging have helped overcome technical limitation in order to visualize MTs in intact living organisms including Drosophila or Caenorhabditis elegans. We recently took advantage of the well-characterized development, small size and transparency of C. elegans to monitor MT dynamics throughout tissue biogenesis with high spatial and temporal resolution. Using the sex myoblast lineage that generates the egg-laying muscles from 2 mitotic precursors, we identified selective dynamics in precursor versus differentiated cells, and molecular regulation of MT dynamics changes that occur during cell differentiation. We discuss here how this approach led to novel insights into the regulation of MTs dynamics and organization in vivo.

19.
J Pathol ; 226(2): 338-51, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21984283

ABSTRACT

Cytokinesis is the last step of cell division that physically separates the daughter cells. As such, it ensures the proper inheritance of both nuclear and cytoplasmic contents. Accomplishment of cytokinesis in eukaryotes is dictated by several key events: establishment of the division plane, furrow ingression through contraction of an actomyosin ring and abscission via membrane fusion. Most mammalian somatic cells are diploid. Polyploidy can result from cytokinesis failure and may contribute to the development of pathologies such as cancer. However, polyploidy is essential for cellular differentiation and function in some contexts (eg hepatocytes, megakaryocytes and others). Consequently, the degree of ploidy and the achievement of cytokinesis must be tightly regulated throughout an organism and among different cell types. In this review we will highlight several examples of normal and pathological polyploidy, focusing on those caused by a controlled failure or dysregulation of cytokinesis, respectively. Last, we propose therapeutic routes to control cytokinesis to restore or block cell division.


Subject(s)
Cytokinesis/genetics , Ploidies , Aneuploidy , Female , Germ Cells/pathology , Hematologic Diseases/pathology , Hepatocytes/pathology , Humans , Infertility, Female/pathology , Macular Degeneration/pathology , Megakaryocytes/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Cardiac/pathology , Neoplasms/pathology , Neurofibromatosis 2/pathology , Oculocerebrorenal Syndrome/pathology
20.
Methods Mol Biol ; 777: 57-69, 2011.
Article in English | MEDLINE | ID: mdl-21773920

ABSTRACT

Microtubules are cytoskeletal structures built of alpha- and beta-tubulins. Although tubulins are highly conserved throughout evolution, microtubules can be adapted to a range of different functions. A powerful mechanism that could regulate the functional specialization of microtubules is the posttranslational modification of tubulin molecules. Two tubulin modifications, polyglutamylation and polyglycylation, generate amino acid side chains of different length on tubulin. These modifications are thought to regulate interactions between microtubules and their associated proteins; however, detailed studies of this potential mechanism have not been performed. The investigation of the potential regulatory role of polyglutamylation requires in vitro tools to visualize the molecular events that could be affected by this modification. Classically, in vitro work with microtubules is performed with tubulin from brain tissue; however, this tubulin is highly posttranslationally modified. Here, we describe a method for the purification of tubulin carrying controlled levels of polyglutamylation, which can be used in basic in vitro assays.


Subject(s)
Microtubules/metabolism , Polyglutamic Acid/metabolism , Cell Line, Tumor , Chromatography , Electrophoresis, Polyacrylamide Gel , Humans , Immunoblotting , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...