Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
J Dairy Sci ; 107(7): 4277-4287, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38395395

ABSTRACT

Cheese is a food in which toxic concentrations of biogenic amines (BA) may be reached, mainly as a consequence of the decarboxylation of determined amino acids by certain lactic acid bacteria (LAB). To maintain the food safety of cheese, environmentally friendly strategies are needed that specifically prevent the growth of BA-producing LAB and the accumulation of BA. The bacteriocins produced by LAB are natural compounds with great potential as food biopreservatives. This work examines the antimicrobial potential of 7 bacteriocin-containing, cell-free supernatants (CFS: coagulin A-CFS, enterocin A-CFS, enterocin P-CFS, lacticin 481-CFS, nisin A-CFS, nisin Z-CFS and plantaricin A-CFS) produced by LAB against 48 strains of the LAB species largely responsible for the accumulation of the most important BA in cheese, that is, histamine, tyramine, and putrescine. Susceptibility to the different CFS was strain-dependent. The histamine-producing species with the broadest sensitivity spectrum were Lentilactobacillus parabuchneri (the species mainly responsible for the accumulation of histamine in cheese) and Pediococcus parvulus. The tyramine-producing species with the broadest sensitivity spectrum was Enterococcus faecium, and Enterococcus faecalis and Enterococcus hirae were among the most sensitive putrescine producers. Nisin A-CFS was active against 31 of the 48 BA-producing strains (the broadest antimicrobial spectrum recorded). Moreover, commercial nisin A prevented biofilm formation by 67% of the BA-producing, biofilm-forming LAB strains. These findings underscore the potential of bacteriocins in the control of BA-producing LAB and support the use of nisin A as a food-grade biopreservative for keeping BA-producing LAB in check and reducing BA accumulation in cheese.


Subject(s)
Bacteriocins , Biofilms , Biogenic Amines , Cheese , Lactobacillales , Nisin , Cheese/microbiology , Bacteriocins/pharmacology , Bacteriocins/metabolism , Biogenic Amines/metabolism , Nisin/pharmacology , Biofilms/drug effects , Lactobacillales/metabolism , Anti-Infective Agents/pharmacology , Food Microbiology
2.
Food Res Int ; 175: 113777, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129064

ABSTRACT

Histamine is a biogenic amine synthesized through the enzymatic decarboxylation of the amino acid histidine. It can accumulate at high concentrations in foods through the metabolism of certain bacteria, sometimes leading to adverse reactions in consumers. In cheese, histamine can accumulate at toxic levels; Lentilactobacillus parabuchneri has been identified the major cause of this problem. Previous studies have shown some L. parabuchneri strains to form biofilms on different surfaces, posing a contamination risk during cheese production, particularly for cheeses that are processed post-ripening (e.g., grating or slicing). The food contamination they cause can result in economic losses and even foodborne illness if histamine accumulates in the final product. The aim of the present work was to identify the genes of L. parabuchneri involved in biofilm formation, and to determine their function. The genomes of six strains with different biofilm-production capacities (strong, moderate and weak) were sequenced and analysed. A cluster of four genes, similar to those involved in sortase-mediated pilus formation, was identified in the strong biofilm-producers, suggesting it to have a role in surface adhesion. Cloning and heterologous expression in Lactococcus cremoris NZ9000 confirmed its functionality and involvement in adhesion and, therefore, in biofilm formation. PacBio sequencing showed this cluster to be located on a 33.4 kb plasmid, which might increase its chances of horizontal transmission. These findings provide insight into the genetic factors associated with biofilm formation in histamine-producing L. parabuchneri, and into the risks associated with this bacterium in cheese production.


Subject(s)
Food Microbiology , Histamine , Histamine/analysis , Plasmids , Bacteria , Multigene Family/genetics , Biofilms
3.
Antibiotics (Basel) ; 12(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37508300

ABSTRACT

Salmonella enterica serovar Derby (S. Derby) ranks fifth among nontyphoidal Salmonella serovars causing human infections in the European Union. S. Derby isolates (36) collected between 2006 and 2018 in a Spanish region (Asturias) from human clinical samples (20) as well as from pig carcasses, pork- or pork and beef-derived products, or wild boar (16) were phenotypically characterized with regard to resistance, and 22 (12 derived from humans and 10 from food-related samples) were also subjected to whole genome sequence analysis. The sequenced isolates belonged to ST40, a common S. Derby sequence type, and were positive for SPI-23, a Salmonella pathogenicity island involved in adherence and invasion of the porcine jejune enterocytes. Isolates were either susceptible (30.6%), or resistant to one or more of the 19 antibiotics tested for (69.4%). Resistances to tetracycline [tet(A), tet(B) and tet(C)], streptomycin (aadA2), sulfonamides (sul1), nalidixic acid [gyrA (Asp87 to Asn)] and ampicillin (blaTEM-1-like) were detected, with frequencies ranging from 8.3% to 66.7%, and were higher in clinical than in food-borne isolates. The fosA7.3 gene was present in all sequenced isolates. The most common phenotype was that conferred by the tet(A), aadA2 and sul1 genes, located within identical or closely related variants of Salmonella Genomic Island 1 (SGI1), where mercury resistance genes were also present. Diverse IncI1-I(α) plasmids belonging to distinct STs provided antibiotic [blaTEM-1, tet(A) and/or tet(B)] and heavy metal resistance genes (copper and silver), while small pSC101-like plasmids carried tet(C). Regardless of their location, most resistance genes were associated with genetic elements involved in DNA mobility, including a class one integron, multiple insertion sequences and several intact or truncated transposons. By phylogenetic analysis, the isolates were distributed into two distinct clades, both including food-borne and clinical isolates. One of these clades included all SGI1-like positive isolates, which were found in both kinds of samples throughout the entire period of study. Although the frequency of S. Derby in Asturias was very low (0.5% and 3.1% of the total clinical and food isolates of S. enterica recovered along the period of study), it still represents a burden to human health linked to transmission across the food chain. The information generated in the present study can support further epidemiological surveillance aimed to control this zoonotic pathogen.

4.
Antibiotics (Basel) ; 12(5)2023 May 02.
Article in English | MEDLINE | ID: mdl-37237745

ABSTRACT

Enterococcus is a diverse genus of Gram-positive bacteria belonging to the lactic acid bacteria (LAB) group. It is found in many environments, including the human gut and fermented foods. This microbial genus is at a crossroad between its beneficial effects and the concerns regarding its safety. It plays an important role in the production of fermented foods, and some strains have even been proposed as probiotics. However, they have been identified as responsible for the accumulation of toxic compounds-biogenic amines-in foods, and over the last 20 years, they have emerged as important hospital-acquired pathogens through the acquisition of antimicrobial resistance (AMR). In food, there is a need for targeted measures to prevent their growth without disturbing other LAB members that participate in the fermentation process. Furthermore, the increase in AMR has resulted in the need for the development of new therapeutic options to treat AMR enterococcal infections. Bacteriophages have re-emerged in recent years as a precision tool for the control of bacterial populations, including the treatment of AMR microorganism infections, being a promising weapon as new antimicrobials. In this review, we focus on the problems caused by Enterococcus faecium and Enterococcus faecalis in food and health and on the recent advances in the discovery and applications of enterococcus-infecting bacteriophages against these bacteria, with special attention paid to applications against AMR enterococci.

5.
Foods ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37048324

ABSTRACT

Lentilactobacillus parabuchneri, a lactic acid bacterium, is largely responsible for the production and accumulation of histamine, a toxic biogenic amine, in cheese. L. parabuchneri strains can form biofilms on the surface of industry equipment. Since they are resistant to cleaning and disinfection, they may act as reservoirs of histamine-producing contaminants in cheese. The aim of this study was to investigate the biofilm-producing capacity of L. parabuchneri strains. Using the crystal violet technique, the strains were first categorized as weak, moderate or strong biofilm producers. Analysis of their biofilm matrices revealed them to be mainly composed of proteins. Two strains of each category were then selected to analyze the influence on the biofilm-forming capacity of temperature, pH, carbon source, NaCl concentration and surface material (i.e., focusing on those used in the dairy industry). In general, low temperature (8 °C), high NaCl concentrations (2-3% w/v) and neutral pH (pH 6) prevented biofilm formation. All strains were found to adhere easily to beech wood. These findings increase knowledge of the biofilm-forming capacity of histamine-producing L. parabuchneri strains and how their formation may be prevented for improving food safety.

6.
Foods ; 12(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36900455

ABSTRACT

In recent years, there has been a growing interest in obtaining probiotic bacteria from plant origins. This is the case of Lactiplantibacillus pentosus LPG1, a lactic acid bacterial strain isolated from table olive biofilms with proven multifunctional features. In this work, we have sequenced and closed the complete genome of L. pentosus LPG1 using both Illumina and PacBio technologies. Our intention is to carry out a comprehensive bioinformatics analysis and whole-genome annotation for a further complete evaluation of the safety and functionality of this microorganism. The chromosomic genome had a size of 3,619,252 bp, with a GC (Guanine-Citosine) content of 46.34%. L. pentosus LPG1 also had two plasmids, designated as pl1LPG1 and pl2LPG1, with lengths of 72,578 and 8713 bp (base pair), respectively. Genome annotation revealed that the sequenced genome consisted of 3345 coding genes and 89 non-coding sequences (73 tRNA and 16 rRNA genes). Taxonomy was confirmed by Average Nucleotide Identity analysis, which grouped L. pentosus LPG1 with other sequenced L. pentosus genomes. Moreover, the pan-genome analysis showed that L. pentosus LPG1 was closely related to the L. pentosus strains IG8, IG9, IG11, and IG12, all of which were isolated from table olive biofilms. Resistome analysis reported the absence of antibiotic resistance genes, whilst PathogenFinder tool classified the strain as a non-human pathogen. Finally, in silico analysis of L. pentosus LPG1 showed that many of its previously reported technological and probiotic phenotypes corresponded with the presence of functional genes. In light of these results, we can conclude that L. pentosus LPG1 is a safe microorganism and a potential human probiotic with a plant origin and application as a starter culture for vegetable fermentations.

7.
Viruses ; 15(1)2023 01 07.
Article in English | MEDLINE | ID: mdl-36680219

ABSTRACT

The rise of antimicrobial resistant (AMR) bacteria is a major health concern, especially with regard to members of the ESKAPE group, to which vancomycin-resistant (VRE) Enterococcus faecium belongs. Phage therapy has emerged as a novel alternative for the treatment of AMR infections. This, however, relies on the isolation and characterisation of a large collection of phages. This work describes the exploration of human faeces as a source of new E. faecium-infecting phages. Phage vB_EfaH_163 was isolated and characterised at the microbiological, genomic, and functional levels. vB_EfaH_163 phage, a new member of Herelleviridae, subfamily Brockvirinae, has a dsDNA genome of 150,836 bp that does not harbour any virulence factors or antibiotic resistance genes. It infects a wide range of E. faecium strains of different origins, including VRE strains. Interestingly, it can also infect Enterococcus faecalis strains, even some that are linezolid-resistant. Its capacity to control the growth of a clinical VRE isolate was shown in broth culture and in a Galleria mellonella animal model. The discovery and characterisation of vB_EfaH_163 increases the number of phages that might be used therapeutically against AMR bacteria.


Subject(s)
Bacteriophages , Enterococcus faecium , Gram-Positive Bacterial Infections , Moths , Vancomycin-Resistant Enterococci , Humans , Animals , Enterococcus faecium/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Linezolid/therapeutic use , Moths/microbiology , Models, Animal , Gram-Positive Bacterial Infections/microbiology , Microbial Sensitivity Tests
8.
NPJ Biofilms Microbiomes ; 8(1): 92, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402858

ABSTRACT

Foodborne pathogenic microorganisms form biofilms at abiotic surfaces, which is a particular challenge in food processing industries. The complexity of biofilm formation requires a fundamental understanding on the involved molecular mechanisms, which may then lead to efficient prevention strategies. In the present study, biogenic amine producing bacteria, i.e., Lentilactobacillus parabuchneri DSM 5987 strain isolated from cheese were studied in respect with biofilm formation, which is of substantial relevance given their contribution to the presence of histamine in dairy products. While scanning electron microscopy was used to investigate biofilm adhesion at stainless steel surfaces, in situ infrared attenuated total reflection spectroscopy (IR-ATR) using a custom flow-through assembly was used for real-time and non-destructive observations of biofilm formation during a period of several days. The spectral window of 1700-600 cm-1 provides access to vibrational signatures characteristic for identifying and tracking L. parabuchneri biofilm formation and maturation. Especially, the amide I and II bands, lactic acid produced as the biofilm matures, and a pronounced increase of bands characteristic for extracellular polymeric substances (EPS) provide molecular insight into biofilm formation, maturation, and changes in biofilm architecture. Finally, multivariate data evaluation strategies were applied facilitating the unambiguous classification of the observed biofilm changes via IR spectroscopic data.


Subject(s)
Extracellular Polymeric Substance Matrix , Lactobacillus , Biofilms , Stainless Steel
9.
Microb Drug Resist ; 28(7): 773-779, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35727074

ABSTRACT

Dispersion of transferable oxazolidinone resistance genes among enterococci poses a serious problem to human health. Prompt detection of bacteria carrying these genes is crucial to avoid their spread to multidrug-resistant bacteria. The aim of the study was to describe the presence of optrA-positive isolates among enterococci in a Spanish hospital, and to determine their genetic context and location through whole genome sequencing. All enterococci recovered in a Spanish hospital (Hospital El Bierzo; HEB) from February to December 2018 (n = 443), with minimal inhibitory concentrations (MICs) to linezolid (LZD) ≥4 mg/L, were tested by polymerase chain reaction for the presence of cfr, optrA, and poxtA transferable genes. Only four Enterococcus faecalis isolates (0.9%) had LZD MICs ≥4 mg/L and none of them was positive for cfr or poxtA genes. However, the optrA gene was detected in three isolates collected from urine samples of community patients, whose genomes were sequenced and subjected to bioinformatics analysis. These isolates belonged to different clones: ST7, ST480, and ST585. In these three isolates, the optrA gene was located on plasmids, associated with IS1216 in different arrays. In one isolate, the optrA plasmid coexists with a second plasmid, which carried multiple resistance genes for different classes of antibiotics. Detection of optrA-positive E. faecalis isolates in the community is a matter of concern. The spread of these bacteria into hospital settings, particularly in those, such as the HEB, where vancomycin-resistant enterococci are endemic, should be avoided, to preserve the efficacy of the last-resort oxazolidinones.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Oxazolidinones , Anti-Bacterial Agents/pharmacology , Basic Helix-Loop-Helix Transcription Factors , Drug Resistance, Bacterial/genetics , Enterococcus , Enterococcus faecalis , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Humans , Linezolid/pharmacology , Microbial Sensitivity Tests , Oxazolidinones/pharmacology
10.
Arch Microbiol ; 204(4): 220, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35333989

ABSTRACT

Currently, consumption of spontaneously fermented milks is common in Algeria, making it a feasible source of diverse lactic acid bacteria (LAB) with the potential to be used as adjunct cultures to improve quality and safety of fermented dairy products. In this context, to select eligible indigenous strains which could be applied as bioprotective and/or starter cultures, the present study aimed to characterize the genomic variability, biotechnological potential, and safety of thirty-eight LAB isolated from Algerian dairy and farm sources of western Algeria. The isolates were unequivocally identified by 16S rRNA gene and fingerprint-based methods. The following species were identified: Enterococcus faecium (n = 15), Enterococcus durans (n = 2), Enterococcus hirae (n = 2), Enterococcus lactis (n = 1), Lactiplantibacillus plantarum (n = 6), Lactococcus lactis (n = 4), Levilactobacillus brevis (n = 3), Lacticaseibacillus paracasei (n = 3), Lacticaseibacillus rhamnosus (n = 1), and Pediococcus acidilactici (n = 1). Among the strains, three of them, L. lactis LGMY8, Lb. plantarum LGMY30 and Lb. paracasei LGMY31 were safe and showed some valuable biotechnological properties, such as high acidification, proteolytic activity, EPS production, and inhibition of undesirable bacteria that made them powerful candidates to be used as starter.


Subject(s)
Lactobacillales , Algeria , Farms , Food Microbiology , RNA, Ribosomal, 16S/genetics
11.
Sci Rep ; 11(1): 11482, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34075064

ABSTRACT

pUO-STmRV1 is an IncC plasmid discovered in the Spanish clone of the emergent monophasic variant of Salmonella enterica serovar Typhimurium, which has probably contributed to its epidemiological success. The sequence of the entire plasmid determined herein revealed a largely degenerated backbone with accessory DNA incorporated at four different locations. The acquired DNA constitutes more than two-thirds of the pUO-STmRV1 genome and originates from plasmids of different incompatibility groups, including IncF (such as R100 and pSLT, the virulence plasmid specific of S. Typhimurium), IncN and IncI, from the integrative element GIsul2, or from yet unknown sources. In addition to pSLT virulence genes, the plasmid carries genes conferring resistance to widely-used antibiotics and heavy metals, together with a wealth of genetic elements involved in DNA mobility. The latter comprise class 1 integrons, transposons, pseudo-transposons, and insertion sequences, strikingly with 14 copies of IS26, which could have played a crucial role in the assembly of the complex plasmid. Typing of pUO-STmRV1 revealed backbone features characteristically associated with type 1 and type 2 IncC plasmids and could therefore be regarded as a hybrid plasmid. However, a rooted phylogenetic tree based on core genes indicates that it rather belongs to an ancient lineage which diverged at an early stage from the branch leading to most extant IncC plasmids detected so far. pUO-STmRV1 may have evolved at a time when uncontrolled use of antibiotics and biocides favored the accumulation of multiple resistance genes within an IncC backbone. The resulting plasmid thus allowed the Spanish clone to withstand a wide variety of adverse conditions, while simultaneously promoting its own propagation through vertical transmission.


Subject(s)
DNA Transposable Elements , Phylogeny , Plasmids/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Virulence Factors/genetics , Humans , Salmonella typhimurium/isolation & purification , Spain
12.
Foods ; 10(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33802798

ABSTRACT

The multiple health benefits attributed to the bioactive compound γ-aminobutyric acid (GABA) have prompted the food industry to investigate the development of functional GABA-rich foods via the use of GABA-producing microorganisms. This study reports the isolation of six GABA-producing Lactococcus lactis strains from camel's milk; this is the first time that such microorganisms have been isolated from milk. The sequencing and in silico analysis of their genomes, and the characterisation of their technological and safety properties, confirmed their potential as starters. Experimental cheeses made with all six strains (individually) accumulated GABA at concentrations of up to 457 mg/kg. These GABA-producing L. lactis strains could be used as starter cultures for the manufacture of functional GABA-enriched cheeses that provide health benefits to consumers.

13.
Front Microbiol ; 12: 735364, 2021.
Article in English | MEDLINE | ID: mdl-35069462

ABSTRACT

Colistin is a last-resort antibiotic in fighting severe infections caused by multidrug resistant Gram negative pathogens in hospitals. Zoonotic bacteria acquire colistin resistance in animal reservoirs and mediate its spread along the food chain. This is the case of non-typhoid serovars of Salmonella enterica. Colistin-resistant S. enterica in foods represents a threat to human health. Here, we assessed the prevalence of colistin-resistance in food-borne isolates of S. enterica (2014-2019; Asturias, Spain), and established the genetic basis and transferability of this resistance. Five out of 231 isolates tested (2.2%) were resistant to colistin. Four of them, belonging to the European monophasic ST34 clone of S. Typhimurium, were characterized in the present study. They were collected from pork or pork and beef meat-derived products, either in 2015 (three isolates) or 2019 (one isolate). Molecular typing with XbaI-PFGE and plasmid profiling revealed distinct patterns for each isolate, even though two of the 2015 isolates derived from the same sample. The MICs of colistin ranged from 8 to 16 mg/L. All isolates carried the mcr-1.1 gene located on conjugative plasmids of the incompatibility groups IncX4 (2015 isolates) or IncHI2 (2019 isolate). Apart from colistin resistance, the four isolates carried chromosomal genes conferring resistance to ampicillin, streptomycin, sulfonamides and tetracycline [bla TEM-1, strA-strB, sul2, and tet(B)] and heavy metals, including copper and silver (silESRCFBAGP and pcoGE1ABCDRSE2), arsenic (arsRSD2A2BCA1D1) ± mercury (merEDACPTR), which are characteristically associated with the European ST34 monophasic clone. The 2019 isolate was also resistant to other antibiotics, comprising third generation cephalosporins and cephamycins. The latter phenotype was conferred by the bla CMY-2 gene located on an IncI1-I(α)-ST2 plasmid. Results in the present study identified meat-derived products as a reservoir of a highly successful clone harboring transferable plasmids which confer resistance to colistin and other clinically important antibiotics. An important reduction in the number of food-borne S. enterica detected during the period of the study, together with the low frequency of colistin resistance, underlines the success of One Health initiatives, such as those implemented at the UE, to control zoonotic bacteria along the food chain and to halt the spread of antimicrobial resistance.

14.
Food Technol Biotechnol ; 58(3): 260-272, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33281482

ABSTRACT

RESEARCH BACKGROUND: Consumption of spontaneously fermented camel´s milk is common in Algeria, making it a feasible source of diverse lactic acid bacteria (LAB) with the potential to be used as adjunct cultures to improve quality and safety of fermented dairy products. EXPERIMENTAL APPROACH: Twelve raw camel´s milk samples were used as a source of indigenous LAB, which were further characterised by examining39 phenotypic traits with technological relevance. RESULTS AND CONCLUSIONS: Thirty-five non-starter LAB (NSLAB) were isolated from 12 Algerian raw camel's milk samples and they were microbiologically, biochemically and genetically characterised. Some isolates showed proteolytic activity, acidifying capacity, the ability to use citrate, and to produce dextran and acetoin. Ethanol, acetaldehyde, methyl acetate, acetoin and acetic acid were the major volatile compounds detected. Cluster analysis performed using the unweighted group with arithmetic average (UPGMA) method, and based on the thirty-nine phenotypic characteristics investigated, reflected the microbial diversity that can be found in raw camel´s milk. NOVELTY AND SCIENTIFIC CONTRIBUTION: The isolated strains, from a non-typical source, showed interesting technological traits to be considered as potential adjunct cultures. Cluster analysis based on the examined phenotypic characteristics proved to be a useful tool for the typification of isolates when no genetic information is available. These findings may be of use towards an industrialised production of camel's milk dairy products.

15.
Food Chem ; 331: 127303, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32562979

ABSTRACT

ß-phenylethylamine and tryptamine are biogenic amines (BA) often found in foods. In general, BA are assumed to be toxic and their accumulation in food is not recommended. However, present knowledge regarding the toxicity of ß-phenylethylamine and tryptamine is limited; more information is needed if qualitative and quantitative risk assessments of foods are to be successfully conducted. This study describes a real-time analysis of ß-phenylethylamine and tryptamine toxicity on a human intestinal epithelial cell line. Both BA caused cell necrosis and apoptosis, although the former was the main mode of action of ß-phenylethylamine, and the latter the main mode of action of tryptamine. Only tryptamine was cytotoxic at concentrations found in BA-rich foods. The results presented in this work may contribute to establish legal limits for ß-phenylethylamine and tryptamine in food.


Subject(s)
Cytotoxins/toxicity , Food/adverse effects , Tryptamines/toxicity , Apoptosis/drug effects , Cell Line , Dose-Response Relationship, Drug , Humans , Intestinal Mucosa/cytology , Legislation, Food , Phenethylamines/toxicity , Risk Assessment
16.
Int J Food Microbiol ; 321: 108548, 2020 May 16.
Article in English | MEDLINE | ID: mdl-32050139

ABSTRACT

Histamine, one of the most toxic and commonly encountered biogenic amines (BA) in food, is produced by the microbial decarboxylation of histidine. It may accumulate at high concentrations in fish and fermented food. Cheese has some of the highest histamine concentrations, the result of the histidine-decarboxylase activity of certain lactic acid bacteria (LAB). The present work describes the nucleotide sequence and transcriptional organization of the gene cluster responsible for histamine biosynthesis (the HDC cluster) in Lactobacillus vaginalis IPLA 11064 isolated from cheese. The influence of histidine availability and pH on histamine production and the expression of the HDC cluster genes is also examined. As expected, the results suggest that the production of histamine under acidic conditions improves cell survival by maintaining the cytosol at an appropriate pH. However, the transcriptional regulation of the HDC cluster is quite different from that described in other dairy histamine-producing LAB, probably due to the lack of a termination-antitermination system in the histidyl-tRNA synthetase gene (hisS).


Subject(s)
Cheese/microbiology , Cytosol/chemistry , Histamine/biosynthesis , Lactobacillus/physiology , Animals , Cheese/analysis , Gene Expression Regulation, Bacterial , Histidine/analysis , Histidine/metabolism , Histidine Decarboxylase/genetics , Hydrogen-Ion Concentration , Lactobacillus/genetics , Lactobacillus/isolation & purification , Lactobacillus/metabolism , Microbial Viability
17.
Front Microbiol ; 11: 592172, 2020.
Article in English | MEDLINE | ID: mdl-33488539

ABSTRACT

Enterococci are a diverse group of Gram-positive, lactic acid bacteria (LAB). They are found in many environments, including fermented foods, in which they could constitute a health threat since they produce biogenic amines, which consumption can lead to intoxication. Moreover, enterococci has also emerged as an important hospital-acquired pathogens via its acquisition of antimicrobial resistance. Bacteriophages possess features that make them optimal biotechnological weapons for controlling bacterial growth in disease and food spoilage contexts. However, no silver bullet bacteriophage exists that can eliminate all the undesirable bacteria in a complex environment. Rather, a combination of phages with different host ranges would be required which implies the need for large collections of diverse phages. This work reports the isolation of several Enterococcus faecalis-infecting bacteriophages from different types of cheese, along with the range of E. faecalis strains of diverse origin (from dairy to clinical environments) they are able to infect. The isolated phages showed a large diversity regarding the number and origin of strains they infect. Some of these phages were subjected to morphological and genomic characterization which confirmed their diversity and showed they belong to different families and genera. The present findings increase the potential arsenal for the bacteriophage-based biocontrol of harmful E. faecalis populations.

18.
Sci Rep ; 9(1): 16881, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727936

ABSTRACT

Enterococcus faecalis is a lactic acid bacterium characterized by its tolerance of very diverse environmental conditions, a property that allows it to colonize many different habitats. This species can be found in food products, especially in fermented foods where it plays an important role as a biopreservative and influences the development of organoleptic characteristics. However, E. faecalis also produces the biogenic amines tyramine and putrescine. The consumption of food with high concentrations of these compounds can cause health problems. The present work reports the construction, via homologous recombination, of a double mutant of E. faecalis in which the clusters involved in tyramine and putrescine synthesis (which are located in different regions of the chromosome) are no longer present. Analyses showed the double mutant to grow and adhere to intestinal cells normally, and that the elimination of genes involved in the production of tyramine and putrescine has no effect on the expression of other genes.


Subject(s)
Biofilms/growth & development , Enterococcus faecalis/genetics , Gene Deletion , Gene Expression Regulation, Bacterial , Multigene Family , Bacterial Adhesion , Caco-2 Cells , Chromosomes, Bacterial/chemistry , Enterococcus faecalis/growth & development , Enterococcus faecalis/metabolism , Food Microbiology , Genetic Engineering/methods , Homologous Recombination , Humans , Hydrogen-Ion Concentration , Putrescine/biosynthesis , Transcriptome , Tyramine/biosynthesis
19.
Front Microbiol ; 10: 566, 2019.
Article in English | MEDLINE | ID: mdl-30949154

ABSTRACT

Biogenic amines (BA) - nitrogenous compounds of low molecular weight - are the result of metabolism of certain amino acids. They are biologically present in all living organisms and play essential physiological roles. However, their accumulation in foodstuffs due to the metabolic activity of certain microorganisms represents a toxicological risk. Containing such microorganisms, and with an abundance of precursor substrate amino acids, fermented foods in general, and cheeses in particular, provide an ideal matrix for the accumulation of these toxic compounds. Unfortunately, the main microorganisms responsible for BA accumulation are members of the lactic acid bacteria (LAB) group, which are also essential for the development of the organoleptic characteristics of the final product. The methods used to reduce the BA content of cheese, such as milk pasteurization, commonly fail to do so, and affect desirable non-BA-producing LAB as well. Bacteriophages have been proposed as biotechnological tools for diminishing the presence of undesirable microorganisms in dairy products. Given their specificity, they could be used to target the population of BA-producing bacteria. In this work, we aimed to explore the use of Enterococcus faecalis infecting phages as a tool to reduce the content of BA in dairy products. For this, we proceeded to the isolation and characterization of E. faecalis bacteriophage 156, a member of the family Myoviridae. Its genome was sequenced and compared with that of E. faecalis family Myoviridae phages available in public databases. Its capacity to decrease the accumulation of the BA tyramine and putrescine in an experimental laboratory-scale cheese model was proven.

20.
Sci Rep ; 9(1): 120, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30644398

ABSTRACT

Putrescine and cadaverine are among the most common biogenic amines (BA) in foods, but it is advisable that their accumulation be avoided. Present knowledge about their toxicity is, however, limited; further research is needed if qualitative and quantitative risk assessments for foods are to be conducted. The present work describes a real-time analysis of the cytotoxicity of putrescine and cadaverine on intestinal cell cultures. Both BA were cytotoxic at concentrations found in BA-rich foods, although the cytotoxicity threshold for cadaverine was twice that of putrescine. Their mode of cytotoxic action was similar, with both BA causing cell necrosis; they did not induce apoptosis. The present results may help in establishing legal limits for both putrescine and cadaverine in food.


Subject(s)
Biogenic Amines/analysis , Cadaverine/analysis , Food Analysis/standards , Putrescine/analysis , Apoptosis/drug effects , Biogenic Amines/toxicity , Cadaverine/toxicity , Cells, Cultured , Cytotoxins/analysis , Cytotoxins/pharmacology , HT29 Cells , Humans , Intestines/cytology , Intestines/drug effects , Necrosis/chemically induced , Putrescine/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...