Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(43): 60609-60621, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34159470

ABSTRACT

The aim of the study was to determine if gold-mining activities could impact the mercury (Hg) concentrations and isotopic signatures in freshwater fish consumed by riparian people in French Guiana. Total Hg, MeHg concentrations, and Hg stable isotopes ratios were analyzed in fish muscles from different species belonging to three feeding patterns (herbivorous, periphytophagous, and piscivorous). We compared tributaries impacted by gold-mining activities (Camopi, CR) with a pristine area upstream (Trois-Sauts, TS), along the Oyapock River. We measured δ15N and δ 13C to examine whether Hg patterns are due to differences in trophic level. Differences in δ 15N and δ 13C values between both studied sites were only observed for periphytophagous fish, due to difference of CN baselines, with enriched values at TS. Total Hg concentrations and Hg stable isotope signatures showed that Hg accumulated in fish from both areas has undergone different biogeochemical processes. Δ199Hg variation in fish (-0.5 to 0.2‰) was higher than the ecosystem baseline defined by a Δ199Hg of -0.66‰ in sediments, and suggested limited aqueous photochemical MeHg degradation. Photochemistry-corrected δ202Hg in fish was 0.7‰ higher than the baseline, consistent with biophysical and chemical isotope fractionation in the aquatic environment. While THg concentrations in periphytophagous fish were higher in the gold-mining area, disturbed by inputs of suspended particles, than in TS, the ensemble of Hg isotope shifts in fish is affected by the difference of biotic (methylation/demethylation) and abiotic (photochemistry) processes between both areas and did therefore not allow to resolve the contribution of gold-mining-related liquid Hg(0) in fish tissues. Mercury isotopes of MeHg in fish and lower trophic level organisms can be complementary to light stable isotope tracers.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Fishes , French Guiana , Gold , Humans , Mercury/analysis , Mercury Isotopes , Mining , Water Pollutants, Chemical/analysis
2.
Environ Sci Technol ; 45(23): 9910-6, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22003970

ABSTRACT

Exposure of humans and wildlife to various inorganic and organometallic forms of mercury (Hg) may induce adverse health effects. While human populations in developed countries are mainly exposed to marine fish monomethylmercury (MMHg), this is not necessarily the case for developing countries and diverse indigenous people. Identification of Hg exposure sources from biomonitor media such as urine or hair would be useful in combating exposure. Here we report on the Hg stable isotope signatures and Hg speciation in human hair across different gold miner, indigenous and urban populations in Bolivia and France. We found evidence for both mass-dependent isotope fractionation (MDF) and mass-independent isotope fractionation (MIF) in all hair samples. Three limiting cases of dominant exposure to inorganic Hg (IHg), freshwater fish MMHg, and marine fish MMHg sources are used to define approximate Hg isotope source signatures. Knowing the source signatures, we then estimated Hg exposure sources for the Bolivian gold miner populations. Modeled IHg levels in hair correspond well to measured IHg concentrations (R = 0.9), demonstrating that IHg exposure sources to gold miners can be monitored in hair samples following either its chemical speciation or isotopic composition. Different MMHg and inorganic exposure levels among gold miners appear to correspond to living and working conditions, including proximity to small towns, and artisanal vs large scale mining activity.


Subject(s)
Food Contamination/analysis , Hair/chemistry , Mercury/analysis , Occupational Exposure/analysis , Animals , Bolivia , Fishes , France , Humans , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 43(23): 8985-90, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19943677

ABSTRACT

We report mercury (Hg) mass-dependent isotope fractionation (MDF) and mass-independent isotope fractionation (MIF) in hair samples of the Bolivian Esse Ejjas native people and in several tropical fish species that constitute their daily diet. MDF with delta(202)Hg ranging from -0.40 to -0.92 per thousand for fish and +1.04 to +1.42 per thousand for hair was observed. Hair samples of native people with a fish-dominated diet are enriched by +2.0 +/- 0.2 per thousand in delta(202)Hg relative to the fish consumed. Both odd Hg isotopes, (199)Hg and (201)Hg, display MIF in fish (from -0.14 to +0.38 per thousand for Delta(201)Hg and from -0.09 to +0.55 per thousand for Delta(199)Hg) and in hair (from +0.12 to +0.66 per thousand for Delta(201)Hg and from +0.14 to +0.81 per thousand for Delta(199)Hg). No significant difference in MIF anomalies is observed between Hg in fish and in human hair, suggesting that the anomalies act as conservative source tracers between upper trophic levels of the tropical food chain. Fish Hg MIF anomalies are 10-fold lower than those published for fish species from midlatitude lakes. Grouping all Amazonian fish species per location shows that Delta(199)Hg:Delta(201)Hg regression slopes for the clear water Itenez River basin (0.95 +/- 0.08) are significantly lower than those for the white water Beni River basin (1.28 +/- 0.12). Assuming that the observed MIF originates from aquatic photoreactions, we calculated limited photodemethylation of monomethylmercury (MMHg) in the Beni River floodplains and insignificant photodemethylation in the Itenez River floodplains. This is possibly related to lower residence times of MMHg in the Itenez compared to the Beni River floodplains. Finally, a significantly negative Delta(201)Hg of -0.14 per thousand in Beni River fish suggests that the inorganic Hg precursor to the MMHg that bioaccumulates up the food chain defines an ecosystem specific non-zero Delta(201)Hg baseline. Calculation of photodemethylation intensities from Hg or MMHg MIF, therefore, requires a baseline correction.


Subject(s)
Ecosystem , Environmental Monitoring , Fishes/metabolism , Hair/chemistry , Mercury/analysis , Age Distribution , Aging/metabolism , Animals , Bolivia , Chemical Fractionation , Geography , Humans , Light , Mercury Isotopes , Methylmercury Compounds/analysis , Oxidation-Reduction/radiation effects , Population Groups , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL