Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 15(4): 424-431, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38628790

ABSTRACT

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.

2.
J Med Chem ; 67(6): 4251-4258, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38456628

ABSTRACT

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.


Subject(s)
Chemistry, Pharmaceutical , Power, Psychological , Humans , Female
3.
J Chem Inf Model ; 63(12): 3786-3798, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37267072

ABSTRACT

The blood-brain barrier (BBB) plays a critical role in preventing harmful endogenous and exogenous substances from penetrating the brain. Optimal brain penetration of small-molecule central nervous system (CNS) drugs is characterized by a high unbound brain/plasma ratio (Kp,uu). While various medicinal chemistry strategies and in silico models have been reported to improve BBB penetration, they have limited application in predicting Kp,uu directly. We describe a physics-based computational approach, a quantum mechanics (QM)-based energy of solvation (E-sol), to predict Kp,uu. Prospective application of this method in internal CNS drug discovery programs highlights the utility and accuracy of this new method, which showed a categorical accuracy of 79% and an R2 of 0.61 from a linear regression model.


Subject(s)
Blood-Brain Barrier , Brain , Biological Transport/physiology , Central Nervous System Agents , Computer Simulation
4.
J Med Chem ; 65(3): 1996-2022, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35044775

ABSTRACT

A newly validated target for tuberculosis treatment is phosphopantetheinyl transferase, an essential enzyme that plays a critical role in the biosynthesis of cellular lipids and virulence factors in Mycobacterium tuberculosis. The structure-activity relationships of a recently disclosed inhibitor, amidinourea (AU) 8918 (1), were explored, focusing on the biochemical potency, determination of whole-cell on-target activity for active compounds, and profiling of selective active congeners. These studies show that the AU moiety in AU 8918 is largely optimized and that potency enhancements are obtained in analogues containing a para-substituted aromatic ring. Preliminary data reveal that while some analogues, including 1, have demonstrated cardiotoxicity (e.g., changes in cardiomyocyte beat rate, amplitude, and peak width) and inhibit Cav1.2 and Nav1.5 ion channels (although not hERG channels), inhibition of the ion channels is largely diminished for some of the para-substituted analogues, such as 5k (p-benzamide) and 5n (p-phenylsulfonamide).


Subject(s)
Bacterial Proteins/metabolism , Guanidine/analogs & derivatives , Mycobacterium tuberculosis/enzymology , Transferases (Other Substituted Phosphate Groups)/metabolism , Urea/analogs & derivatives , Bacterial Proteins/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Guanidine/chemistry , Guanidine/metabolism , Guanidine/pharmacology , Kinetics , Microbial Sensitivity Tests , Molecular Conformation , Molecular Dynamics Simulation , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Urea/chemistry , Urea/metabolism , Urea/pharmacology
5.
J Med Chem ; 63(9): 4655-4684, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32118427

ABSTRACT

A high-throughput screen designed to discover new inhibitors of histone acetyltransferase KAT6A uncovered CTX-0124143 (1), a unique aryl acylsulfonohydrazide with an IC50 of 1.0 µM. Using this acylsulfonohydrazide as a template, we herein disclose the results of our extensive structure-activity relationship investigations, which resulted in the discovery of advanced compounds such as 55 and 80. These two compounds represent significant improvements on our recently reported prototypical lead WM-8014 (3) as they are not only equivalently potent as inhibitors of KAT6A but are less lipophilic and significantly more stable to microsomal degradation. Furthermore, during this process, we discovered a distinct structural subclass that contains key 2-fluorobenzenesulfonyl and phenylpyridine motifs, culminating in the discovery of WM-1119 (4). This compound is a highly potent KAT6A inhibitor (IC50 = 6.3 nM; KD = 0.002 µM), competes with Ac-CoA by binding to the Ac-CoA binding site, and has an oral bioavailability of 56% in rats.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Acetyltransferases/antagonists & inhibitors , Hydrazines/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Biological Availability , Drug Discovery , Drug Stability , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Hydrazines/pharmacokinetics , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics
6.
J Med Chem ; 62(15): 7146-7159, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31256587

ABSTRACT

A high-throughput screen for inhibitors of the histone acetyltransferase, KAT6A, led to identification of an aryl sulfonohydrazide derivative (CTX-0124143) that inhibited KAT6A with an IC50 of 1.0 µM. Elaboration of the structure-activity relationship and medicinal chemistry optimization led to the discovery of WM-8014 (97), a highly potent inhibitor of KAT6A (IC50 = 0.008 µM). WM-8014 competes with acetyl-CoA (Ac-CoA), and X-ray crystallographic analysis demonstrated binding to the Ac-CoA binding site. Through inhibition of KAT6A activity, WM-8014 induces cellular senescence and represents a unique pharmacological tool.


Subject(s)
Benzenesulfonates/chemistry , Drug Discovery/methods , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/metabolism , Hydrazines/chemistry , Animals , Benzenesulfonates/pharmacology , Caco-2 Cells , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Hydrazines/pharmacology , Mice , Protein Structure, Secondary
7.
Nature ; 560(7717): 253-257, 2018 08.
Article in English | MEDLINE | ID: mdl-30069049

ABSTRACT

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Subject(s)
Benzenesulfonates/pharmacology , Cellular Senescence/drug effects , Histone Acetyltransferases/antagonists & inhibitors , Hydrazines/pharmacology , Lymphoma/drug therapy , Lymphoma/pathology , Sulfonamides/pharmacology , Acetylation/drug effects , Animals , Benzenesulfonates/therapeutic use , Cell Proliferation/drug effects , Cells, Cultured , Drug Development , Fibroblasts , Gene Expression Regulation, Neoplastic/drug effects , Histone Acetyltransferases/deficiency , Histone Acetyltransferases/genetics , Histones/chemistry , Histones/metabolism , Hydrazines/therapeutic use , Lymphoma/enzymology , Lymphoma/genetics , Lysine/chemistry , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Sulfonamides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...