Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2198, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503727

ABSTRACT

Metastasis arises from disseminated tumour cells (DTCs) that are characterized by intrinsic phenotypic plasticity and the capability of seeding to secondary organs. DTCs can remain latent for years before giving rise to symptomatic overt metastasis. In this context, DTCs fluctuate between a quiescent and proliferative state in response to systemic and microenvironmental signals including immune-mediated surveillance. Despite its relevance, how intrinsic mechanisms sustain DTCs plasticity has not been addressed. By interrogating the epigenetic state of metastatic cells, we find that tumour progression is coupled with the activation of oncogenic enhancers that are organized in variable interconnected chromatin domains. This spatial chromatin context leads to the activation of a robust transcriptional response upon repeated exposure to retinoic acid (RA). We show that this adaptive mechanism sustains the quiescence of DTCs through the activation of the master regulator SOX9. Finally, we determine that RA-stimulated transcriptional memory increases the fitness of metastatic cells by supporting the escape of quiescent DTCs from NK-mediated immune surveillance. Overall, these findings highlight the contribution of oncogenic enhancers in establishing transcriptional memories as an adaptive mechanism to reinforce cancer dormancy and immune escape, thus amenable for therapeutic intervention.


Subject(s)
Immunologic Surveillance , Regulatory Sequences, Nucleic Acid , Cell Division , Cell Line, Tumor , Chromatin
2.
Nucleic Acids Res ; 51(16): 8309-8321, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37528048

ABSTRACT

i-Motifs (iMs) are four-stranded DNA structures that form at cytosine (C)-rich sequences in acidic conditions in vitro. Their formation in cells is still under debate. We performed CUT&Tag sequencing using the anti-iM antibody iMab and showed that iMs form within the human genome in live cells. We mapped iMs in two human cell lines and recovered C-rich sequences that were confirmed to fold into iMs in vitro. We found that iMs in cells are mainly present at actively transcribing gene promoters, in open chromatin regions, they overlap with R-loops, and their abundance and distribution are specific to each cell type. iMs with both long and short C-tracts were recovered, further extending the relevance of iMs. By simultaneously mapping G-quadruplexes (G4s), which form at guanine-rich regions, and comparing the results with iMs, we proved that the two structures can form in independent regions; however, when both iMs and G4s are present in the same genomic tract, their formation is enhanced. iMs and G4s were mainly found at genes with low and high transcription rates, respectively. Our findings support the in vivo formation of iM structures and provide new insights into their interplay with G4s as new regulatory elements in the human genome.


Among the secondary structures alternative to the DNA double helix, i-Motifs (iMs) and G-quadruplexes (G4s) are four-stranded non-canonical nucleic acid structures that form in cytosine- and guanine-rich regions, respectively. Because iMs fold in vitro under acidic conditions, they were long thought to form only in vitro. We now show that iMs, like G4s, form in live human cells mainly at gene promoters in open chromatin. iMs that are unstable in vitro still form in cells. iMs and G4s are cell-type specific and associated with increased transcription; however, transcript levels are remarkably different: low for iMs and high for G4s, indicating their distinct activity as regulators of the cell transcriptome. The iM/G4 interplay may represent a novel therapeutic target in disease.


Subject(s)
G-Quadruplexes , Gene Expression Regulation , Humans , Regulatory Sequences, Nucleic Acid , DNA/genetics , DNA/chemistry , Genomics
3.
Psychophysiology ; 60(12): e14388, 2023 12.
Article in English | MEDLINE | ID: mdl-37477167

ABSTRACT

Anticipatory mechanisms are known to play a key role in language, but they have been mostly investigated with violation paradigms, which only consider what happens after predictions have been (dis)confirmed. Relatively few studies focused on the pre-stimulus interval and found that stronger expectations are associated with lower pre-stimulus alpha power. However, alpha power also fluctuates spontaneously, in the absence of experimental manipulations; and in the attention and perception domains, spontaneously low pre-stimulus power is associated with better behavioral performance and with event-related potential (ERPs) with shorter latencies and higher amplitudes. Importantly, little is known about the role of alpha fluctuations in other domains, as it is in language. To this aim, we investigated whether spontaneous fluctuations in pre-stimulus alpha power modulate language-related ERPs in a semantic congruence task. Electrophysiology data were analyzed using Generalized Additive Mixed Models to model nonlinear interactions between pre-stimulus alpha power and EEG amplitude, at the single-trial level. We found that the N400 and the late posterior positivity/P600 were larger in the case of lower pre-stimulus alpha power. Still, while the N400 was observable regardless of the level of pre-stimulus power, a late posterior positivity/P600 effect was only observable for low pre-stimulus alpha power. We discuss these findings in light of the different, albeit connected, functional interpretations of pre-stimulus alpha and the ERPs according to both a nonpredictive interpretation focused on attentional mechanisms and under a predictive processing framework.


Subject(s)
Electroencephalography , Evoked Potentials , Humans , Male , Female , Evoked Potentials/physiology , Comprehension/physiology , Language , Semantics
4.
5.
Cancer Res ; 83(2): 195-218, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36409826

ABSTRACT

Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared with proneural GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core-fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using preclinical minimally invasive PET, implicating this metabolite as a potential subgroup-restricted biomarker.Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets. SIGNIFICANCE: Metabolic characterization of subgroup-specific glioblastoma (GBM) sphere-forming cells identifies the L-fucose pathway as a vulnerability restricted to mesenchymal GBM, disclosing a potential precision medicine strategy for targeting cancer metabolism.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Fucose/metabolism , Signal Transduction , Brain Neoplasms/pathology , Neoplastic Stem Cells/pathology , Cell Line, Tumor
6.
Front Psychol ; 13: 1028814, 2022.
Article in English | MEDLINE | ID: mdl-36506966

ABSTRACT

Pragmatics, defined as the ability to integrate language and context to communicate effectively, may be impaired in Multiple Sclerosis (MS). We present the case of a patient with active secondary progressive MS who, after a first neuropsychological assessment that evidenced only a slight pragmatic impairment, suffered a sudden worsening of her clinical conditions, treated with corticosteroids. After this clinical worsening, her pragmatic abilities declined markedly, both in comprehension and production. This worsening was accompanied by a decline only in one attention task, in the context of an overall stable cognitive functioning. We conclude that pragmatics may be a domain particularly susceptible to cognitive worsening, highlighting the importance of its assessment in clinical practice.

7.
Cortex ; 157: 167-193, 2022 12.
Article in English | MEDLINE | ID: mdl-36327746

ABSTRACT

We used a large-scale data-driven approach to investigate the role of word form in accessing semantics. By using distributional semantic methods and taking advantage of an ERP lexical decision mega-study, we investigated the exact time dynamic of semantic access from printed words as driven by orthography-semantics consistency (OSC) and phonology-semantics consistency (PSC). Generalized Additive Models revealed very early and late OSC-by-PSC interactions, visible at 100 and 400 msec, respectively. This pattern suggests that, during visual word recognition: a) meaning is accessed by means of two distinct and interactive paths - the orthography-to-meaning and the orthography-to-phonology-to-meaning path -, which mutually contribute to recognition since early stages; b) the system may exploit a dual mechanism for semantic access, with early and late effects associated to a fast-coarse and a slow-fine grained semantic analysis, respectively. The results also highlight the high sensitivity of the visual word recognition system to arbitrary form-meaning relations.


Subject(s)
Reading , Semantics , Humans , Recognition, Psychology
8.
Neurosci Biobehav Rev ; 138: 104713, 2022 07.
Article in English | MEDLINE | ID: mdl-35636560

ABSTRACT

The right temporoparietal junction (rTPJ) is a brain area that plays a critical role in a variety of cognitive functions. Although different theoretical proposals tried to explain the ubiquitous role of rTPJ, recent evidence suggests that rTPJ may be a fundamental cortical region involved in different kinds of predictions. This systematic review aims to better investigate the potential role of rTPJ under a predictive processing perspective, providing an overview of cognitive impairments in neurological patients as the consequence of structural or functional disconnections or damage of rTPJ. Results confirm the involvement of rTPJ across several tasks and neurological pathologies. RTPJ, via its connections with other brain networks, would integrate diverse information and update internal models of the world. Against traditional views, which tend to focus on distinct domains, we argue that the role of rTPJ can be parsimoniously interpreted as a key hub involved in domain-general predictions. This alternative account of rTPJ role in aberrant predictive processing opens different perspectives, stimulating new hypotheses in basic research and clinical contexts.


Subject(s)
Parietal Lobe , Temporal Lobe , Brain , Brain Mapping , Cognition , Humans , Magnetic Resonance Imaging
9.
Anal Chem ; 93(46): 15243-15252, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34762806

ABSTRACT

G-quadruplexes (G4s) are implicated in pathological processes such as cancer and infective diseases. Their targeting with G4-ligands has shown therapeutic capacity. Most of the current G4-ligands are planar molecules, do not discriminate among G4s, and have poor druglike properties. The available methods to identify compounds selective for one single G4 are often time-consuming. Here, we describe the development, validation, and application of an affinity-selection mass spectrometry method that employs unlabeled G4 oligonucleotides as targets and allows testing of up to 320 unmodified small molecules in a single tube. As a proof of concept, this method was applied to screen a library of 40 000 druglike molecules against two G4s, transcriptional regulators of the HIV-1 LTR promoter. We identified nonplanar pyrazolopyrimidines that selectively recognize and stabilize the major HIV-1 LTR G4 possibly by fitting and binding through H-bonding in its unique binding pocket. The compounds inhibit LTR promoter activity and HIV-1 replication. We propose this method to prompt the fast development of new G4-based therapeutics.


Subject(s)
G-Quadruplexes , HIV-1 , HIV-1/genetics , Ligands , Oligonucleotides , Promoter Regions, Genetic
10.
Nat Commun ; 12(1): 3885, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162892

ABSTRACT

Cell identity is maintained by activation of cell-specific gene programs, regulated by epigenetic marks, transcription factors and chromatin organization. DNA G-quadruplex (G4)-folded regions in cells were reported to be associated with either increased or decreased transcriptional activity. By G4-ChIP-seq/RNA-seq analysis on liposarcoma cells we confirmed that G4s in promoters are invariably associated with high transcription levels in open chromatin. Comparing G4 presence, location and transcript levels in liposarcoma cells to available data on keratinocytes, we showed that the same promoter sequences of the same genes in the two cell lines had different G4-folding state: high transcript levels consistently associated with G4-folding. Transcription factors AP-1 and SP1, whose binding sites were the most significantly represented in G4-folded sequences, coimmunoprecipitated with their G4-folded promoters. Thus, G4s and their associated transcription factors cooperate to determine cell-specific transcriptional programs, making G4s to strongly emerge as new epigenetic regulators of the transcription machinery.


Subject(s)
G-Quadruplexes , Gene Expression Profiling/methods , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcriptome/genetics , Base Sequence , Binding Sites/genetics , Cell Line , Cell Line, Tumor , DNA/chemistry , DNA/genetics , DNA/metabolism , Humans , Nucleic Acid Conformation , Protein Binding , Sp1 Transcription Factor/metabolism , Transcription Factor AP-1/metabolism
11.
Commun Biol ; 4(1): 510, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931711

ABSTRACT

G-quadruplexes (G4s) are four-stranded nucleic acid structures abundant at gene promoters. They can adopt several distinctive conformations. G4s have been shown to form in the herpes simplex virus-1 (HSV-1) genome during its viral cycle. Here by cross-linking/pull-down assay we identified ICP4, the major HSV-1 transcription factor, as the protein that most efficiently interacts with viral G4s during infection. ICP4 specific and direct binding and unfolding of parallel G4s, including those present in HSV-1 immediate early gene promoters, induced transcription in vitro and in infected cells. This mechanism was also exploited by ICP4 to promote its own transcription. Proximity ligation assay allowed visualization of G4-protein interaction at the single selected G4 in cells. G4 ligands inhibited ICP4 binding to G4s. Our results indicate the existence of a well-defined G4-viral protein network that regulates the productive HSV-1 cycle. They also point to G4s as elements that recruit transcription factors to activate transcription in cells.


Subject(s)
G-Quadruplexes , Herpes Simplex/complications , Herpesvirus 1, Human/genetics , Immediate-Early Proteins/metabolism , Osteosarcoma/virology , Promoter Regions, Genetic , Viral Transcription , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/virology , DNA Replication , Herpes Simplex/genetics , Herpes Simplex/virology , Humans , Immediate-Early Proteins/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Tumor Cells, Cultured
12.
Nucleic Acids Res ; 49(2): 847-863, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33410915

ABSTRACT

Well-differentiated liposarcoma (WDLPS) is a malignant neoplasia hard to diagnose and treat. Its main molecular signature is amplification of the MDM2-containing genomic region. The MDM2 oncogene is the master regulator of p53: its overexpression enhances p53 degradation and inhibits apoptosis, leading to the tumoral phenotype. Here, we show that the MDM2 inducible promoter G-rich region folds into stable G-quadruplexes both in vitro and in vivo and it is specifically recognized by cellular helicases. Cell treatment with G-quadruplex-ligands reduces MDM2 expression and p53 degradation, thus stimulating cancer cell cycle arrest and apoptosis. Structural characterization of the MDM2 G-quadruplex revealed an extraordinarily stable, unique four-tetrad antiparallel dynamic conformation, amenable to selective targeting. These data indicate the feasibility of an out-of-the-box G-quadruplex-targeting approach to defeat WDLPS and all tumours where restoration of wild-type p53 is sought. They also point to G-quadruplex-dependent genomic instability as possible cause of MDM2 expansion and WDLPS tumorigenesis.


Subject(s)
G-Quadruplexes , Gene Expression Regulation, Neoplastic/genetics , Liposarcoma/therapy , Molecular Targeted Therapy , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Soft Tissue Neoplasms/therapy , Apoptosis , Cell Cycle , Cell Line, Tumor , Computer Simulation , Humans , Ligands , Models, Genetic , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Protein Interaction Mapping , Proteolysis , Proto-Oncogene Proteins c-mdm2/biosynthesis , Tumor Suppressor Protein p53/metabolism
13.
J Med Chem ; 63(3): 1245-1260, 2020 02 13.
Article in English | MEDLINE | ID: mdl-31930916

ABSTRACT

Designing small molecules able to break down G4 structures in mRNA (RG4s) offers an interesting approach to cancer therapy. Here, we have studied cationic porphyrins (CPs) bearing an alkyl chain up to 12 carbons, as they bind to RG4s while generating reactive oxygen species upon photoirradiation. Fluorescence-activated cell sorting (FACS) and confocal microscopy showed that the designed alkyl CPs strongly penetrate cell membranes, binding to KRAS and NRAS mRNAs under low-abundance cell conditions. In Panc-1 cells, alkyl CPs at nanomolar concentrations promote a dramatic downregulation of KRAS and NRAS expression, but only if photoactivated. Alkyl CPs also reduce the metabolic activity of pancreatic cancer cells and the growth of a Panc-1 xenograft in SCID mice. Propidium iodide/annexin assays and caspase 3, caspase 7, and PARP-1 analyses show that these compounds activate apoptosis. All these data demonstrate that the designed alkyl CPs are efficient photosensitizers for the photodynamic therapy of ras-driven cancers.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , G-Quadruplexes/drug effects , Pancreatic Neoplasms/drug therapy , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Base Sequence , Cell Line, Tumor , Down-Regulation/drug effects , Female , GTP Phosphohydrolases/genetics , Genes, ras/drug effects , Humans , Membrane Proteins/genetics , Mice, SCID , Photochemotherapy/methods , Photosensitizing Agents/chemical synthesis , Porphyrins/chemical synthesis , Proto-Oncogene Proteins p21(ras)/genetics , RNA/chemistry , RNA/genetics , Reactive Oxygen Species/metabolism
14.
Nucleic Acids Res ; 47(21): 11057-11068, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31665504

ABSTRACT

I-motifs are non-canonical nucleic acids structures characterized by intercalated H-bonds between hemi-protonated cytosines. Evidence on the involvement of i-motif structures in the regulation of cellular processes in human cells has been consistently growing in the recent years. However, i-motifs within non-human genomes have never been investigated. Here, we report the characterization of i-motifs within the long terminal repeat (LTR) promoter of the HIV-1 proviral genome. Biophysical and biochemical analysis revealed formation of a predominant i-motif with an unprecedented loop composition. One-dimensional nuclear magnetic resonance investigation demonstrated formation of three G-C H-bonds in the long loop, which likely improve the structure overall stability. Pull-down experiments combined with mass spectrometry and protein crosslinking analysis showed that the LTR i-motif is recognized by the cellular protein hnRNP K, which induced folding at physiological conditions. In addition, hnRNP K silencing resulted in an increased LTR promoter activity, confirming the ability of the protein to stabilize the i-motif-forming sequence, which in turn regulates the LTR-mediated HIV-1 transcription. These findings provide new insights into the complexity of the HIV-1 virus and lay the basis for innovative antiviral drug design, based on the possibility to selectively recognize and target the HIV-1 LTR i-motif.


Subject(s)
HIV Long Terminal Repeat , HIV-1 , Heterogeneous-Nuclear Ribonucleoprotein K/chemistry , Promoter Regions, Genetic , Proviruses , RNA, Viral/chemistry , Binding Sites , Gene Expression Regulation, Viral , HIV-1/genetics , HIV-1/physiology , Proviruses/genetics , Proviruses/physiology , Transcription, Genetic , Virus Replication
15.
Biochim Biophys Acta Gen Subj ; 1862(6): 1276-1282, 2018 06.
Article in English | MEDLINE | ID: mdl-29524541

ABSTRACT

BACKGROUND: G-quadruplexes (G4s) are nucleic acids secondary structures formed in guanine-rich sequences. Anti-G4 antibodies represent a tool for the direct investigation of G4s in cells. Surface Plasmon Resonance (SPR) is a highly sensitive technology, suitable for assessing the affinity between biomolecules. We here aimed at improving the orientation of an anti-G4 antibody on the SPR sensor chip to optimize detection of binding antigens. METHODS: SPR was employed to characterize the anti-G4 antibody interaction with G4 and non-G4 oligonucleotides. Dextran-functionalized sensor chips were used both in covalent coupling and capturing procedures. RESULTS: The use of two leading molecule for orienting the antibody of interest allowed to improve its activity from completely non-functional to 65% active. The specificity of the anti-G4 antobody for G4 structures could thus be assessed with high sensitivity and reliability. CONCLUSIONS: Optimization of the immobilization protocol for SPR biosensing, allowed us to determine the anti-G4 antibody affinity and specificity for G4 antigens with higher sensitivity with respect to other in vitro assays such as ELISA. Anti-G4 antibody specificity is a fundamental assumption for the future utilization of this kind of antibodies for monitoring G4s directly in cells. GENERAL SIGNIFICANCE: The heterogeneous orientation of amine-coupling immobilized ligands is a general problem that often leads to partial or complete inactivation of the molecules. Here we describe a new strategy for improving ligand orientation: driving it from two sides. This principle can be virtually applied to every molecule that loses its activity or is poorly immobilized after standard coupling to the SPR chip surface.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , G-Quadruplexes , Surface Plasmon Resonance/methods , Animals , Antibody Affinity , Antibody Specificity , Kinetics , Mice
16.
Sci Rep ; 7: 45244, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28338097

ABSTRACT

G-quadruplexes are four-stranded conformations of nucleic acids that act as cellular epigenetic regulators. A dynamic G-quadruplex forming region in the HIV-1 LTR promoter represses HIV-1 transcription when in the folded conformation. This activity is enhanced by nucleolin, which induces and stabilizes the HIV-1 LTR G-quadruplexes. In this work by a combined pull-down/mass spectrometry approach, we consistently found hnRNP A2/B1 as an additional LTR-G-quadruplex interacting protein. Surface plasmon resonance confirmed G-quadruplex specificity over linear sequences and fluorescence resonance energy transfer analysis indicated that hnRNP A2/B1 is able to efficiently unfold the LTR G-quadruplexes. Evaluation of the thermal stability of the LTR G-quadruplexes in different-length oligonucleotides showed that the protein is fit to be most active in the LTR full-length environment. When hnRNP A2/B1 was silenced in cells, LTR activity decreased, indicating that the protein acts as a HIV-1 transcription activator. Our data highlight a tightly regulated control of transcription based on G-quadruplex folding/unfolding, which depends on interacting cellular proteins. These findings provide a deeper understanding of the viral transcription mechanism and may pave the way to the development of drugs effective against the integrated HIV-1, present both in actively and latently infected cells.


Subject(s)
G-Quadruplexes , HIV-1/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Promoter Regions, Genetic , Terminal Repeat Sequences , Transcriptional Activation , Gene Expression Regulation, Viral , HEK293 Cells , Humans , Protein Binding
17.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1371-1381, 2017 May.
Article in English | MEDLINE | ID: mdl-27913192

ABSTRACT

BACKGROUND: G-quadruplexes (G4s) are four-stranded nucleic acid structures that form in G-rich sequences. Nucleolin (NCL) is a cellular protein reported for its functions upon G4 recognition, such as induction of neurodegenerative diseases, tumor and virus mechanisms activation. We here aimed at defining NCL/G4 binding determinants. METHODS: Electrophoresis mobility shift assay was used to detect NCL/G4 binding; circular dichroism to assess G4 folding, topology and stability; dimethylsulfate footprinting to detect G bases involved in G4 folding. RESULTS: The purified full-length human NCL was initially tested on telomeric G4 target sequences to allow for modulation of loop, conformation, length, G-tract number, stability. G4s in promoter regions with more complex sequences were next employed. We found that NCL binding to G4s heavily relies on G4 loop length, independently of the conformation and oligonucleotide/loop sequence. Low stability G4s are preferred. When alternative G4 conformations are possible, those with longer loops are preferred upon binding to NCL, even if G-tracts need to be spared from G4 folding. CONCLUSIONS: Our data provide insight into how G4s and the associated proteins may control the ON/OFF molecular switch to several pathological processes, including neurodegeneration, tumor and virus activation. Understanding these regulatory determinants is the first step towards the development of targeted therapies. GENERAL SIGNIFICANCE: The indication that NCL binding preferentially stimulates and induces folding of G4s containing long loops suggests NCL ability to modify the overall structure and steric hindrance of the involved nucleic acid regions. This protein-induced modification of the G4 structure may represent a cellular mechanosensor mechanism to molecular signaling and disease pathogenesis. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Subject(s)
G-Quadruplexes , Guanosine/metabolism , Oligonucleotides/metabolism , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Binding Sites , Circular Dichroism , Electrophoretic Mobility Shift Assay , Gene Expression Regulation , Guanosine/chemistry , Ligands , Nucleic Acid Denaturation , Oligonucleotides/chemistry , Oncogenes , Phosphoproteins/chemistry , Promoter Regions, Genetic , Protein Binding , RNA-Binding Proteins/chemistry , Structure-Activity Relationship , Telomere/chemistry , Telomere/metabolism , Nucleolin
18.
Nucleic Acids Res ; 44(21): 10343-10353, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27794039

ABSTRACT

We have previously shown that clusters of guanine quadruplex (G4) structures can form in the human herpes simplex-1 (HSV-1) genome. Here we used immunofluorescence and immune-electron microscopy with a G4-specific monoclonal antibody to visualize G4 structures in HSV-1 infected cells. We found that G4 formation and localization within the cells was virus cycle dependent: viral G4s peaked at the time of viral DNA replication in the cell nucleus, moved to the nuclear membrane at the time of virus nuclear egress and were later found in HSV-1 immature virions released from the cell nucleus. Colocalization of G4s with ICP8, a viral DNA processing protein, was observed in viral replication compartments. G4s were lost upon treatment with DNAse and inhibitors of HSV-1 DNA replication. The notable increase in G4s upon HSV-1 infection suggests a key role of these structures in the HSV-1 biology and indicates new targets to control both the lytic and latent infection.


Subject(s)
DNA, Viral/chemistry , G-Quadruplexes , Herpesvirus 1, Human/genetics , Molecular Imaging , Animals , Antibodies, Monoclonal , Cell Line , Cells, Cultured , Chlorocebus aethiops , DNA Replication , DNA, Viral/ultrastructure , Herpes Simplex/virology , Humans , Microscopy, Confocal , Microscopy, Immunoelectron/methods , Molecular Imaging/methods , Vero Cells , Virus Replication
19.
Int J Antimicrob Agents ; 47(4): 311-6, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27032748

ABSTRACT

AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent.


Subject(s)
Anti-HIV Agents/pharmacology , HIV-1/drug effects , Oligodeoxyribonucleotides/pharmacology , Virus Attachment/drug effects , Anti-HIV Agents/toxicity , Aptamers, Nucleotide , Cell Survival/drug effects , Cells, Cultured , HIV-1/physiology , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Oligodeoxyribonucleotides/toxicity
20.
J Med Chem ; 58(24): 9639-52, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26599611

ABSTRACT

We have previously reported that stabilization of the G-quadruplex structures in the HIV-1 long terminal repeat (LTR) promoter suppresses viral transcription. Here we sought to develop new G-quadruplex ligands to be exploited as antiviral compounds by enhancing binding toward the viral G-quadruplex structures. We synthesized naphthalene diimide derivatives with a lateral expansion of the aromatic core. The new compounds were able to bind/stabilize the G-quadruplex to a high extent, and some of them displayed clear-cut selectivity toward the viral G-quadruplexes with respect to the human telomeric G-quadruplexes. This feature translated into low nanomolar anti-HIV-1 activity toward two viral strains and encouraging selectivity indexes. The selectivity depended on specific recognition of LTR loop residues; the mechanism of action was ascribed to inhibition of LTR promoter activity in cells. This is the first example of G-quadruplex ligands that show increased selectivity toward the viral G-quadruplexes and display remarkable antiviral activity.


Subject(s)
Anti-HIV Agents/chemistry , G-Quadruplexes , HIV Long Terminal Repeat , HIV-1/drug effects , Imides/chemistry , Naphthalenes/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , HEK293 Cells , HIV-1/genetics , HeLa Cells , Humans , Imides/chemical synthesis , Imides/pharmacology , Ligands , Naphthalenes/chemical synthesis , Naphthalenes/pharmacology , Promoter Regions, Genetic , Protein Binding , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...