Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 17(6): e202301232, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-37975580

ABSTRACT

Block copolymers utilizing oligomeric poly(pentylene-co-hexylene carbonate)diol modified with 2,4-diisocyanatotoluene and further with 2-bromo-N-(3-hydroxypropyl)-2-methylpropanamide were synthesized and utilized as Activators ReGenerated by Electron Transfer Atom Transfer Radical Polymerization macroinitiators to obtain a first generation of multifunctional recycling additives with poly(glycidyl methacrylate-co-butyl methacrylate-co-methyl methacrylate) side chains, which could act as chain extenders. Then, chosen additive was reacted with a radical scavenger, 3,5-ditertbutyl-4-hydroxybenzoic acid (DHBA), to obtain a second generation of reactive additives. Those copolymers had different numbers of epoxy groups per polymer chain, and different number of epoxides opened with DHBA, hence showed a range of properties, and were utilized as reactive modifiers for polylactide (PLA) extrusion melting. The first-generation modifiers caused an increase in PLA's blends relative melt viscosity, stabilized material properties, and enhanced impact strength, while the second-generation modifiers with more than 8 % of epoxide ring opened showed worse properties. However, they managed to suppress the UV degradation of PLA blend plates.

2.
Polymers (Basel) ; 15(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36904474

ABSTRACT

Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.

3.
Angew Chem Int Ed Engl ; 61(47): e202210748, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36178774

ABSTRACT

Thermoplastic elastomers based on polyesters/carbonates have the potential to maximize recyclability, degradability and renewable resource use. However, they often underperform and suffer from the familiar trade-off between strength and extensibility. Herein, we report well-defined reprocessable poly(ester-b-carbonate-b-ester) elastomers with impressive tensile strengths (60 MPa), elasticity (>800 %) and recovery (95 %). Plus, the ester/carbonate linkages are fully degradable and enable chemical recycling. The superior performances are attributed to three features: (1) Highly entangled soft segments; (2) Fully reversible strain-induced crystallization and (3) Precisely placed ZnII -carboxylates dynamically crosslinking the hard domains. The one-pot synthesis couples controlled cyclic monomer ring-opening polymerization and alternating epoxide/anhydride ring-opening copolymerization. Efficient convresion to ionomers is achieved by reacting vinyl-epoxides to install ZnII -carboxylates.

4.
Chem Sci ; 11(33): 8809-8816, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-34123134

ABSTRACT

ATRP (atom transfer radical polymerization) is one of the most robust reversible deactivation radical polymerization (RDRP) systems. However, the limited oxygen tolerance of conventional ATRP impedes its practical use in an ambient atmosphere. In this work, we developed a fully oxygen-tolerant PICAR (photoinduced initiators for continuous activator regeneration) ATRP process occurring in both water and organic solvents in an open reaction vessel. Continuous regeneration of the oxidized form of the copper catalyst with sodium pyruvate through UV excitation allowed the chemical removal of oxygen from the reaction mixture while maintaining a well-controlled polymerization of N-isopropylacrylamide (NIPAM) or methyl acrylate (MA) monomers. The polymerizations of NIPAM were conducted with 250 ppm (with respect to the monomer) or lower concentrations of CuBr2 and a tris[2-(dimethylamino)ethyl]amine ligand. The polymers were synthesized to nearly quantitative monomer conversions (>99%), high molecular weights (M n > 270 000), and low dispersities (1.16 < D < 1.44) in less than 30 min under biologically relevant conditions. The reported method provided a well-controlled ATRP (D = 1.16) of MA in dimethyl sulfoxide despite oxygen diffusion from the atmosphere into the reaction system.

SELECTION OF CITATIONS
SEARCH DETAIL
...