Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Magn Reson Med ; 91(3): 1099-1114, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37997011

ABSTRACT

PURPOSE: To evaluate the influence of skeletal maturation on sodium (23 Na) MRI relaxation parameters and the accuracy of tissue sodium concentration (TSC) quantification in human knee cartilage. METHODS: Twelve pediatric knee specimens were imaged with whole-body 10.5 T MRI using a density-adapted 3D radial projection sequence to evaluate 23 Na parameters: B1 + , T1 , biexponential T 2 * $$ {\mathrm{T}}_2^{\ast } $$ , and TSC. Water, collagen, and sulfated glycosaminoglycan (sGAG) content were calculated from osteochondral biopsies. The TSC was corrected for B1 + , relaxation, and water content. The literature-based TSC (TSCLB ) used previously published values for corrections, whereas the specimen-specific TSC (TSCSP ) used measurements from individual specimens. 23 Na parameters were evaluated in eight cartilage compartments segmented on proton images. Associations between 23 Na parameters, TSCLB - TSCSP difference, biochemical content, and age were determined. RESULTS: From birth to 12 years, cartilage water content decreased by 18%; collagen increased by 59%; and sGAG decreased by 36% (all R2 ≥ 0.557). The short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ ( T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ) decreased by 72%, and the signal fraction relaxing with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ( fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ ) increased by 55% during the first 5 years but remained relatively stable after that. TSCSP was significantly correlated with sGAG content from biopsies (R2 = 0.739). Depending on age, TSCLB showed higher or lower values than TSCSP . The TSCLB - TSCSP difference was significantly correlated with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.850), fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.651), and water content (R2 = 0.738). CONCLUSION: TSC and relaxation parameters measured with 23 Na MRI provide noninvasive information about changes in sGAG content and collagen matrix during cartilage maturation. Cartilage TSC quantification assuming fixed relaxation may be feasible in children older than 5 years.


Subject(s)
Cartilage, Articular , Cartilage , Humans , Child , Child, Preschool , Magnetic Resonance Imaging/methods , Sodium , Collagen , Water , Cartilage, Articular/diagnostic imaging
2.
Neuroimage ; 255: 119200, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35427769

ABSTRACT

Diffu0sion-weighted magnetic resonance imaging (dMRI) is a non-invasive imaging technique that provides information about the barriers to the diffusion of water molecules in tissue. In the brain, this information can be used in several important ways, including to examine tissue abnormalities associated with brain disorders and to infer anatomical connectivity and the organization of white matter bundles through the use of tractography algorithms. However, dMRI also presents certain challenges. For example, historically, the biological validation of tractography models has shown only moderate correlations with anatomical connectivity as determined through invasive tract-tracing studies. Some of the factors contributing to such issues are low spatial resolution, low signal-to-noise ratios, and long scan times required for high-quality data, along with modeling challenges like complex fiber crossing patterns. Leveraging the capabilities provided by an ultra-high field scanner combined with denoising, we have acquired whole-brain, 0.58 mm isotropic resolution dMRI with a 2D-single shot echo planar imaging sequence on a 10.5 Tesla scanner in anesthetized macaques. These data produced high-quality tractograms and maps of scalar diffusion metrics in white matter. This work demonstrates the feasibility and motivation for in-vivo dMRI studies seeking to benefit from ultra-high fields.


Subject(s)
Diffusion Magnetic Resonance Imaging , Macaca , Animals , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging
3.
Magn Reson Med ; 86(3): 1759-1772, 2021 09.
Article in English | MEDLINE | ID: mdl-33780032

ABSTRACT

PURPOSE: Receive array layout, noise mitigation, and B0 field strength are crucial contributors to SNR and parallel-imaging performance. Here, we investigate SNR and parallel-imaging gains at 10.5 T compared with 7 T using 32-channel receive arrays at both fields. METHODS: A self-decoupled 32-channel receive array for human brain imaging at 10.5 T (10.5T-32Rx), consisting of 31 loops and one cloverleaf element, was co-designed and built in tandem with a 16-channel dual-row loop transmitter. Novel receive array design and self-decoupling techniques were implemented. Parallel imaging performance, in terms of SNR and noise amplification (g-factor), of the 10.5T-32Rx was compared with the performance of an industry-standard 32-channel receiver at 7 T (7T-32Rx) through experimental phantom measurements. RESULTS: Compared with the 7T-32Rx, the 10.5T-32Rx provided 1.46 times the central SNR and 2.08 times the peripheral SNR. Minimum inverse g-factor value of the 10.5T-32Rx (min[1/g] = 0.56) was 51% higher than that of the 7T-32Rx (min[1/g] = 0.37) with R = 4 × 4 2D acceleration, resulting in significantly enhanced parallel-imaging performance at 10.5 T compared with 7 T. The g-factor values of 10.5 T-32 Rx were on par with those of a 64-channel receiver at 7 T (eg, 1.8 vs 1.9, respectively, with R = 4 × 4 axial acceleration). CONCLUSION: Experimental measurements demonstrated effective self-decoupling of the receive array as well as substantial gains in SNR and parallel-imaging performance at 10.5 T compared with 7 T.


Subject(s)
Brain , Magnetic Resonance Imaging , Acceleration , Brain/diagnostic imaging , Equipment Design , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
4.
NMR Biomed ; 34(4): e4472, 2021 04.
Article in English | MEDLINE | ID: mdl-33511726

ABSTRACT

A 32-channel RF coil was developed for brain imaging of anesthetized non-human primates (rhesus macaque) at 10.5 T. The coil is composed of an 8-channel dipole transmit/receive array, close-fitting 16-channel loop receive array headcap, and 8-channel loop receive array lower insert. The transceiver dipole array is composed of eight end-loaded dipole elements self-resonant at the 10.5 T proton Larmor frequency. These dipole elements were arranged on a plastic cylindrical former, which was split into two to allow for convenient animal positioning. Nested into the bottom of the dipole array former is located an 8-channel loop receive array, which contains 5 × 10 cm2 square loops arranged in two rows of four loops. Arranged in a close-fitting plastic headcap is located a high-density 16-channel loop receive array. This array is composed of 14 round loops 37 mm in diameter and 2 partially detachable, irregularly shaped loops that encircle the ears. Imaging experiments were performed on anesthetized non-human primates on a 10.5 T MRI system equipped with body gradients with a 60 cm open bore. The coil enabled submillimeter (0.58 mm isotropic) high-resolution anatomical and functional imaging as well as tractography of fasciculated axonal bundles. The combination of a close-fitting loop receive array and dipole transceiver array allowed for a higher-channel-count receiver and consequent higher signal-to-noise ratio and parallel imaging gains. Parallel imaging performance supports high-resolution functional MRI and diffusion MRI with a factor of three reduction in sampling. The transceive array elements during reception contributed approximately one-quarter of the signal-to-noise ratio in the lower half of the brain, which was farthest from the close-fitting headcap receive array.


Subject(s)
Head/diagnostic imaging , Magnetic Resonance Imaging/methods , Animals , Female , Macaca mulatta , Signal-To-Noise Ratio
5.
Neuroimage ; 223: 117349, 2020 12.
Article in English | MEDLINE | ID: mdl-32898683

ABSTRACT

Resting state functional connectivity refers to the temporal correlations between spontaneous hemodynamic signals obtained using functional magnetic resonance imaging. This technique has demonstrated that the structure and dynamics of identifiable networks are altered in psychiatric and neurological disease states. Thus, resting state network organizations can be used as a diagnostic, or prognostic recovery indicator. However, much about the physiological basis of this technique is unknown. Thus, providing a translational bridge to an optimal animal model, the macaque, in which invasive circuit manipulations are possible, is of utmost importance. Current approaches to resting state measurements in macaques face unique challenges associated with signal-to-noise, the need for contrast agents limiting translatability, and within-subject designs. These limitations can, in principle, be overcome through ultra-high magnetic fields. However, imaging at magnetic fields above 7T has yet to be adapted for fMRI in macaques. Here, we demonstrate that the combination of high channel count transmitter and receiver arrays, optimized pulse sequences, and careful anesthesia regimens, allows for detailed single-subject resting state analysis at high resolutions using a 10.5 Tesla scanner. In this study, we uncover thirty spatially detailed resting state components that are highly robust across individual macaques and closely resemble the quality and findings of connectomes from large human datasets. This detailed map of the rsfMRI 'macaque connectome' will be the basis for future neurobiological circuit manipulation work, providing valuable biological insights into human connectomics.


Subject(s)
Brain Mapping/methods , Brain/physiology , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Animals , Female , Image Processing, Computer-Assisted/methods , Macaca fascicularis , Macaca mulatta , Male , Neural Pathways/physiology , Signal-To-Noise Ratio
6.
Magn Reson Med ; 84(6): 3485-3493, 2020 12.
Article in English | MEDLINE | ID: mdl-32767392

ABSTRACT

PURPOSE: In this study, we investigate a strategy to reduce the local specific absorption rate (SAR) while keeping B1+ constant inside the region of interest (ROI) at the ultra-high field (B0 ≥ 7T) MRI. METHODS: Locally raising the resonance structure under the discontinuity (i.e., creating a bump) increases the distance between the accumulated charges and the tissue. As a result, it reduces the electric field and local SAR generated by these charges inside the tissue. The B1+ at a point that is sufficiently far from the coil, however, is not affected by this modification. In this study, three different resonant elements (i.e., loop coil, snake antenna, and fractionated dipole [FD]) are investigated. For experimental validation, a bumped FD is further investigated at 10.5T. After the validation, the transmit performances of eight-channel arrays of each element are compared through electromagnetic (EM) simulations. RESULTS: Introducing a bump reduced the peak 10g-averaged SAR by 21, 26, 23% for the loop and snake antenna at 7T, and FD at 10.5T, respectively. In addition, eight-channel bumped FD array at 10.5T had a 27% lower peak 10g-averaged SAR in a realistic human body simulation (i.e., prostate imaging) compared to an eight-channel FD array. CONCLUSION: In this study, we investigated a simple design strategy based on adding bumps to a resonant element to reduce the local SAR while maintaining B1+ inside an ROI. As an example, we modified an FD and performed EM simulations and phantom experiments with a 10.5T scanner. Results show that the peak 10g-averaged SAR can be reduced more than 25%.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Equipment Design , Humans , Male , Phantoms, Imaging , Prostate
7.
Magn Reson Med ; 84(1): 289-303, 2020 07.
Article in English | MEDLINE | ID: mdl-31846121

ABSTRACT

PURPOSE: To investigate the feasibility of imaging the human torso and to evaluate the performance of several radiofrequency (RF) management strategies at 10.5T. METHODS: Healthy volunteers were imaged on a 10.5T whole-body scanner in multiple target anatomies, including the prostate, hip, kidney, liver, and heart. Phase-only shimming and spoke pulses were used to demonstrate their performance in managing the B1+ inhomogeneity present at 447 MHz. Imaging protocols included both qualitative and quantitative acquisitions to show the feasibility of imaging with different contrasts. RESULTS: High-quality images were acquired and demonstrated excellent overall contrast and signal-to-noise ratio. The experimental results matched well with predictions and suggested good translational capabilities of the RF management strategies previously developed at 7T. Phase-only shimming provided increased efficiency, but showed pronounced limitations in homogeneity, demonstrating the need for the increased degrees of freedom made possible through single- and multispoke RF pulse design. CONCLUSION: The first in-vivo human imaging was successfully performed at 10.5T using previously developed RF management strategies. Further improvement in RF coils, transmit chain, and full integration of parallel transmit functionality are needed to fully realize the benefits of 10.5T.


Subject(s)
Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Heart , Humans , Male , Radio Waves , Signal-To-Noise Ratio
8.
Magn Reson Med ; 84(1): 484-496, 2020 07.
Article in English | MEDLINE | ID: mdl-31751499

ABSTRACT

PURPOSE: The purpose of this study is to safely acquire the first human head images at 10.5T. METHODS: To ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental B1+ and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole-body 10.5T scanner in the Center for Magnetic Resonance Research. RESULTS: Quantitative agreement between the simulated and experimental results was obtained including S-parameters, B1+ maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T2 - and T2∗ -weighted images of human subjects at 10.5T. CONCLUSIONS: In this study, we acquired the first in vivo human head images at 10.5T using an 8-channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8-channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Computer Simulation , Humans , Phantoms, Imaging
9.
Magn Reson Med ; 79(1): 511-514, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28342176

ABSTRACT

PURPOSE: In this work, we investigated the relative effects of static magnetic field exposure (10.5 Tesla [T]) on two physiological parameters; blood pressure (BP) and heart rate (HR). METHODS: In vivo, we recorded both BP and HR in 4 swine (3 female, 1 male) while they were positioned within a 10.5T magnet. All measurements were performed invasively within these anesthetized animals by the placement of pressure catheters into their carotid arteries. RESULTS: We measured average increases of 2.0 mm Hg (standard deviation [SD], 6.9) in systolic BP and an increase of 4.5 mm Hg (SD, 13.7) in the diastolic BPs: We also noted an average increase of 1.2 beats per minute (SD, 2.5) in the HRs during such. CONCLUSION: Data regarding changes in BP and HR in anesthetized swine attributed to whole-body 10.5T exposure are reported. Magn Reson Med 79:511-514, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Anesthesia , Blood Pressure , Heart Rate , Magnetic Fields , Animals , Blood Pressure Determination , Carotid Arteries/diagnostic imaging , Diastole , Female , Magnetic Resonance Imaging , Male , Swine , Systole
10.
Magn Reson Med ; 79(1): 479-488, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28370375

ABSTRACT

PURPOSE: To validate electromagnetic and thermal simulations with in vivo temperature measurements, and to demonstrate a framework that can be used to predict temperature increase caused by radiofrequency (RF) excitation with dipole transmitter arrays. METHODS: Dipole arrays were used to deliver RF energy in the back/neck region of the swine using different RF excitation patterns (n = 2-4 per swine) for heating. The temperature in anesthetized swine (n = 3) was measured using fluoroscopic probes (n = 12) and compared against thermal modeling from animal-specific electromagnetic simulations. RESULTS: Simulated temperature curves were in agreement with the measured data. The root mean square error between simulated and measured temperature rise at all locations (at the end of each RF excitation) is calculated as 0.37°C. The mean experimental temperature rise at the maximum temperature rise locations (averaged over all experiments) is calculated as 2.89°C. The root mean square error between simulated and measured temperature at the maximum temperature rise location is calculated as 0.57°C. (Error values are averaged over all experiments.) CONCLUSIONS: Electromagnetic and thermal simulations were validated with experiments. Thermal effects of RF excitation at 10.5 Tesla with dipoles were investigated. Magn Reson Med 79:479-488, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Equipment Design , Hot Temperature , Hyperthermia, Induced/instrumentation , Radio Waves , Animals , Calibration , Computer Simulation , Electromagnetic Fields , Electromagnetic Radiation , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Models, Anatomic , Phantoms, Imaging , Swine , Tomography, X-Ray Computed
11.
Magn Reson Med ; 77(1): 434-443, 2017 01.
Article in English | MEDLINE | ID: mdl-27770469

ABSTRACT

PURPOSE: To explore the potential of performing body imaging at 10.5 Tesla (T) compared with 7.0T through evaluating the transmit/receive performance of similarly configured dipole antenna arrays. METHODS: Fractionated dipole antenna elements for 10.5T body imaging were designed and evaluated using numerical simulations. Transmit performance of antenna arrays inside the prostate, kidneys and heart were investigated and compared with those at 7.0T using both phase-only radiofrequency (RF) shimming and multi-spoke pulses. Signal-to-noise ratio (SNR) comparisons were also performed. A 10-channel antenna array was constructed to image the abdomen of a swine at 10.5T. Numerical methods were validated with phantom studies at both field strengths. RESULTS: Similar power efficiencies were observed inside target organs with phase-only shimming, but RF nonuniformity was significantly higher at 10.5T. Spokes RF pulses allowed similar transmit performance with accompanying local specific absorption rate increases of 25-90% compared with 7.0T. Relative SNR gains inside the target anatomies were calculated to be >two-fold higher at 10.5T, and 2.2-fold SNR gain was measured in a phantom. Gradient echo and fast spin echo imaging demonstrated the feasibility of body imaging at 10.5T with the designed array. CONCLUSION: While comparable power efficiencies can be achieved using dipole antenna arrays with static shimming at 10.5T; increasing RF nonuniformities underscore the need for efficient, robust, and safe parallel transmission methods. Magn Reson Med 77:434-443, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Computer Simulation , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Whole Body Imaging/methods , Adult , Animals , Equipment Design , Female , Humans , Male , Models, Anatomic , Phantoms, Imaging , Swine
12.
Magn Reson Med ; 76(6): 1932-1938, 2016 12.
Article in English | MEDLINE | ID: mdl-27670251

ABSTRACT

PURPOSE: To present a practical scheme of a simultaneous radiofrequency (RF) transmit (Tx) and receive (Rx) (STAR) system for MRI, discuss the challenges and solutions, and show preliminary in vivo MR images obtained with this new technique. METHODS: A remotely controlled STAR system was built and tested with a transverse electromagnetic head coil on a 4T (Oxford, 90 cm-bore) MRI scanner equipped with an Agilent DirectDrive console (Agilent, Santa Clara, CA). In vivo head images have been acquired using continuous sweep excitation and acquisition. RESULTS: The bench test and MR experimental results show our STAR system to have high isolation (60 dB) between Tx and Rx, with insensitivity to load swings created by head motion. To acquire in vivo head images, ultralow RF peak power of 50 mW was used. CONCLUSION: A novel motion-insensitive STAR MRI technique was developed and experimentally tested. The first in vivo MR images using this method were acquired. Magn Reson Med 76:1932-1938, 2016. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain/anatomy & histology , Magnetic Resonance Imaging/instrumentation , Magnetics/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
13.
NMR Biomed ; 27(8): 926-38, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24890880

ABSTRACT

A noise figure and noise parameter measurement system was developed that consists of a combination spectrum and network analyzer, preamplifier, programmable power supply, noise source, tuning board, and desktop computer. The system uses the Y-factor method for noise figure calculation and allows calibrations to correct for a decrease in excess noise ratio between the noise source and device under test, second stage (system) noise, ambient temperature variations, and available gain of the device under test. Noise parameters are extracted by performing noise figure measurements at several source impedance values obtained by adjusting an electronically controlled tuner. Results for several amplifiers at 128 MHz and 200 MHz agree with independent measurements and with the corresponding datasheets. With some modifications, the system was also used to characterize the noise figure of MRI preamplifiers in strong static magnetic fields up to 9.4 T. In most amplifiers tested the gain was found to be reduced by the magnetic field, while the noise figure increased. These changes are detrimental to signal quality (SNR) and are dependent on the electron mobility and design of the amplifier's semiconductor devices. Consequently, gallium arsenide (GaAs) field-effect transistors are most sensitive to magnetic fields due to their high electron mobility and long, narrow channel, while silicon-germanium (SiGe) bipolar transistor amplifiers are largely immune due to their very thin base.


Subject(s)
Amplifiers, Electronic , Artifacts , Automation , Magnetic Fields , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...